Какой эпителий покрывает слизистую бронхов

Обновлено: 28.04.2024

Слизистая оболочка носовой полости, трахеи, главных, крупних и средних бронхов выстлана ОДНОСЛОЙНЫМ ПРИЗМАТИЧЕСКИМ МНОГОРЯДНЫМ РЕСНИТЧАТЫМ эпителием = ОПМР Эп. Он содержит виды клеток: 1)РЕСНИТЧАТЫЕ эпителиоциты -- высокие призматич. кл., на апикальной пов-сти имеют 250 РЕСНИЧЕК. Функ.:удаление пылевых частиц. 2)БОКАЛОВИДНЫЕ экзокриноциты-
высок. призматич. кл., в апикальной части есть секреторн.гранулы. Функ.: секреция муциногена(слизи).3)БАЗАЛЬНЫЕ эпителиоциты -низкие, малодифф-ные кл. Функ.: это источние РЕГЕНЕРАЦИИ для остальных кл.4)ЩЕТОЧНЫЕ (БЕЗРЕСНИТЧАТЫЕ) эпителиоциты- призматич. кл., на апикальной пов-сти есть МИКРОВОРСИНКИ. Функ.: зто клетки- хеморецепторы. 5)ЭНДОКРИНОЦИТЫ(нейроэндокрин. кл)- содержат гранулы в базальной части. Функ.: секреция гормонов.6)Клетки КЛАРА=бронхиолярные экзокриноциты. (лежат только в БРОНХИОЛАХ). Имеют ГРУШЕВИДНО расширенную апик. часть, в ней есть секреторн.гранулы. Функ.:секреция СУРФАКТАНТА.

Ее стенка состоит из 4-х оболочек: 1) СЛИЗИСТАЯ об-ка, 2) ПОДСЛИЗИСТАЯ основа,
3) ВОЛОКНИСТО-ХРЯЩЕВАЯ об-ка, 4) АДВЕНТИЦИАЛЬНАЯ об-ка.
Слизистая об-ка состоит из 2-х слоев: а) ОПМР эпителий, б)собственная пластинка- рыхлая неоформленная соединит. тк. =РНСТ. Подслизистая основа –плотн. неоформл. соед. тк.+ слизистые ЖЕЛЕЗЫ.Волокнисто-хрящевая об-ка сост. из 16-20 ХРЯЩЕВЫХ ПОЛУколец. Тип ткани- ГИАЛИНОВЫЙ хрящ. Адвентициальная об-ка – РНСТ.
СЛИЗИСТАЯ об-ка всех БРОНХОВ состоит НЕ из 2-х, а из 3-х слоїв:
а) ОПМР эпителий, б)собственная пластинка- РНСТ, в) МЫШЕЧНАЯ пластинка слизистой об-ки- гладкая МЫШЕЧНАЯ. тк.
ГЛАВНЫЙ бронх. Его стенка состоит из 4-х оболочек (см. “ Трахея “). НО: волокнисто-хрящевая об-ка состоит из ЗАМКНУТЫХ хрящевых КОЛЕЦ. Тип ткани- гиалиновый хрящ. КРУПНЫЙ бронх. Его стенка состоит из 4-х оболочек (см.“Трахея “). НО: волокнисто-хрящевая об-ка состоит из ПЛАСТИН гиалинового хряща. СРЕДНИЙ бронх. Его стенка состоит из 4-х оболочек (см. “ Трахея “). НО: волокнисто-хрящевая об-ка состоит из ОСТРОВКОВ и ЗЕРЕН ЭЛАСТИЧЕСКОГО хряща.
МЕЛКИЙ (или внутридольковый) бронх имеет 4 ОСОБЕННОСТИ:
1.--ЭПИТЕЛИЙ в слизистой об-ке НЕ многорядный, а низкий призматическ. ДВУХрядный.
2.--ХРЯЩ полностью ОТСУТСТВУЕТ, значит отсутствует волокнисто-хрящевая об-ка.
3.--очень ТОЛСТЫЙ слой гладкой МЫШЕЧНОЙ ткани (мышечная пластинка).
4.--В подслизистой основе ЖЕЛЕЗЫ ОТСУТСТВУЮТ
ТОЛЬКО МЕЛКИЕ бронхи участвуют в развитии приступа бронхиальной астмы, т.к. они способны СУЖИВАТЬСЯ (бронхоспазм) под влиянием гистамина.

Он представлен ЛЕГОЧНЫМ АЦИНУСОМ—это СТРУКТ.-ФУНКЦИОН. единица респират. отдела. Он состоит из респираторных бронхиол, в стенке к-рых есть АЛЬВЕОЛЫ.
Стенка АЛЬВЕОЛЫ состоит из 3-х типов клеток:
1)АЛЬВЕОЛОЦИТ 1-го типа=РЕСПИРАТОРНЫЙ эпителиоцит. Это однослойный ПЛОСКИЙ эпителий. Функция: через его цитоплазму происходит ГАЗООБМЕН.
2)АЛЬВЕОЛОЦИТ 2-го типа=БОЛЬШОЙ эпителиоцит. Это однослойный КУБИЧЕСКИЙ эпителий. В его цитоплазме есть ПЛАСТИНЧАТЫЕ (или, ЛАМЕЛЛЯРНЫЕ) тельца.
Функция: секреция СУРФАКТАНТА в полость альвеолы. Сурфактант предотвращает: а)спадение альвеол на выдохе, б)развитие отека легкого
3)АЛЬВЕОЛЯРНЫЙ МАКРОФАГ. Клетка звездчатой формы, в цитоплазме много ЛИЗОСОМ. Функция: фагоцитоз пылевых частиц и бактерий.
Эмбриональный источник для эпителия воздухоносных путей и альвеолоцитов- ЭНТОдерма передней кишки. Для макрофагов –это моноциты. Для хряща, мышечной и соединительной ткани- это мезенхима.

Роль эпителия бронхов при воспалении.

Этот фрагмент не претендует на полноту, поскольку некоторые вопросы, рассматриваемые в других разделах сайта, в частности, роль лимфоцитов в воспалении, описывается в статьях, посвященных роли иммунной системы.

Эпителий бронхов. Большую роль в развитии воспаления бронхов играет повреждение эпителия. Функции его многообразны: во-первых, в эпителии находятся наиболее эффективные антиген-презентирующие дендритные клетки, которые после поглощения антигена мигрируют в региональные лимфоузлы, где контактируют со специфическими Т-лимфоцитами; во-вторых, клетки эпителия экспрессируют разнообразные рецепторы, благодаря которым с эпителиоцитами связываются различные БАВ, клетки воспаления, бактерии и; в-третьих, эпителиоциты активно продуцируют медиаторы, в частности, провоспалительные цитокины, поддерживающие хроническое воспаление.

Велика роль эпителия в регуляции экссудации плазмы в просвет бронхов: клетки эпителия, как и другие типы клеток, продуцируют вазоактивные медиаторы экссудации, включая различные лейкотриены (ЛТ), прежде всего ЛТД4, и фактор активации тромбоцитов (ФАТ), причем, первоначальная экссудация имеет защитное действие, поскольку плазма образует гель, который защищает обнаженную мембрану, поэтому имеется связь между степенью повреждения эпителия (аллергеном, поллютантом, бактерией) и выраженностью плазменной экссудации.

бронхи при воспалении

Эпителий продуцирует много провоспалительных цитокинов благодаря выраженной метаболической активности, в частности, метаболит арахидоновой кислоты 15-НЕТЕ (15-гидроксиейкозатетраеновая кислота), который стимулирует продукцию слизи и активирует 5-липоксигеназный путь обмена в тучных клетках, простагландины Е, и F2a, GM-CSP (гранулоцитарно-макрофагаяьный колониестимулируюший фактор), активирующий альвеолярные макрофаги, гранулоциты и базофилы, GCSP (гранулоцитарный колониестимулирующий фактор), интерлейкины (ИЛ), в частности ИЛ-1, ИЛ-6 и ИЛ-8 - хемоаттрактант и активатор эозинофилов и нейтрофилов. Одним из главных хемоаттрактантов, выделяемых эпителием со специфическим привлечением моноцитов - МСР-1 (моноцитарный хемоаттрактантный пептид-1). Эпителий бронхов выделяет также другие медиаторы воспаления: эндотелии-1,- активный вазо- и бронхоконстриктор и активатор фибробластов, цитокины группы RANTES из подсемейства полипептидов В или "С-С" (Regulated on Activation, Normal T-cell Expressed and Secreted), привлекающие эозинофилы, различные факторы роста (PDGE - пластиночный фактор роста, BFGF - основной фактор роста фибробластов, IGE - инсулиноподобный фактор роста),- все из них способны принимать участие в ремоделировании дыхательных путей.

В последнее время большое внимание уделяется выделению эпителием бронхов окиси азота (N0), которая обладает вазо- и бронходилатирующим действием и ее концентрация по-разному изменяется при различных легочных болезнях.

Важным в генезе воспаления является экспрессия различных молекул, прежде всего, молекул адгезии ICAM-I (intercellular adhesion molecnle-I), необходимая для транспорта нейтрофилов и эозинофилов через слизистую в просвет дыхательных путей, а также рецепторов автономной нервной системы, что указывает на влияние автономной нервной системы на функции эпителия и формирование нейрогенного воспаления. Помимо адренорецепторов, мускариновых холинорецепторов (в основном, М3), в последнее время интенсивно изучаются VIP-рецепторы (рецепторы вазоинтестинального пептида), возбудитель которых - VIP -сходен по действию с агонистами и дефицит которого может играть важную роль в патогенезе БА; тахикининовые рецепторы, которые с высокой плотностью находятся на эпителии и опосредуют действие мощных провоспалительных медиаторов - вещества П и нейрокинина А; а также большое количество медиаторных рецепторов, посредством которых различные БАВ модулируют метаболическую активность эпителиоцитов, стимулируют экспрессию других видов рецепторов или, наоборот, тормозят ее.

Таким образом, эпителиоциты действуют как трансдукторы между различными сигналами, возникающими в просвете бронха и на поверхности эпителия, и воспалительными событиями в стенке бронха, причем в нормальных условиях эпителий поддерживает баланс между про- и противовоспалительными эффектами.

При нарушении эпителиального покрова этот баланс нарушается в пользу преобладания провоспалительных эффектов, в просвет бронхов выходят клетки воспаления и жидкая часть плазмы, и при определенных условиях процесс может принять хроническое персистирующее течение.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

а) Дыхательные пути:
• Трубчатые структуры
• Проводят воздух через просвет
• Анатомические отделы (от проксимальных к дистальным):
о Трахея
о Бронхи
о Бронхиолы
о Терминальные бронхиолы
о Респираторные бронхиолы
о Альвеолярные протоки
о Альвеолярные мешочки
о Альвеолы

б) Ветви дыхательных путей:
• Порядки дыхательных путей:
о Образуется 23 порядка дихотомически ветвящихся бронхов ниже киля трахеи
о Между терминальными бронхиолами и альвеолярными мешочками располагается 2-12 порядков (обычно 6-8)
о В каждом альвеолярном мешочке расположено 4-29 (обычно 10) альвеол
• Типы дыхательных путей:
о Бронхи:
- >1 мм в диаметре
- Сужаются и ветвятся
- Отдают бесхрящевые бронхиолы
о Бронхиолы:
- - Наиболее дистальные бронхиолы, выстланные дахательным эпителием, являются терминальными бронхиолами
о Терминальные бронхиолы:
- Наиболее дистальные воздухопроводящие пути
- Отдают - три порядка альвеолярных протоков
о Респираторные бронхиолы:
- Повышается число альвеол в их стенках
- Отдают три порядка альвеолярных протоков
о Альвеолярные протоки:
- Несколько расположенных рядом альвеол
- Оканчиваются альвеолярными мешочками
о Альвеолярные мешочки:
- Группы или скопления наиболее дистальных альвеол
о Альвеолы

в) Функция дыхательных путей:
• Проведение воздуха через просвет
• Газообмен между вдыхаемым воздухом и кровью:
о Доставка кислорода к альвеолам
о Выведение углекислого газа в атмосферу

На рисунке показаны 24 порядка дихотомического ветвления дыхательных путей от трахеи к наиболее дистальным отделам дыхательных путей, составляющим вторичную легочную дольку. Вторичная легочная долька—наиболее мелкая структурная единица легкого, окруженная соединительной тканью и имеющая многогранную форму. Каждая вторичная легочная долька содержит дистальные ветви долевой бронхиолы и сопровождающую ее легочную (дольковую) артерию. Ацинус состоит их дыхательных путей дистальнее терминальных бронхиол, каждая вторичная легочная долька содержит до 12 ацинусов. Терминальные бронхиолы отдают 2-3 респираторных бронхиолы, в свою очередь отдающих три альвеолярных протока, каждый из которых заканчивается альвеолярным мешочком или альвеолой. Респираторные бронхиолы характеризуются альвеолами в их стенке. Стенки альвеолярных протоков покрыты альвеолами. Альвеолярные мешочки оканчиваются скоплениями альвеол. Телескопический вид дыхательных путей, демонстрирующий размер и структурные особенности стенки различных типовдыхательных путей в виде уменьшения числа и размеров хрящевых пластинок. Хрящевые пластинки, наблюдаемые в дыхательных путях крупного и среднего калибра (трахея и бронхи), в бронхах среднего калибра постепенно уменьшаются в размерах и количестве. Стенки мелких дыхательных путей (бронхиол) не содержат хрящевой ткани. Дистальные скопления альвеол и альвеолярные мешочки образуют ацинус — функциональную единицу газообмена в легочной ткани. Ацинусами называют дыхательные пути, сосуды и поддерживающие структуры расположенные дистальнее терминальной бронхиолы. Микроскопическая структура крупных дыхательных путей, содержащих хрящевую ткань. Эти дыхательные пути выстланы псевдополосатым реснитчатым столбчатым (респираторным) эпителием, лежащим на базальной мембране. Реснички участвуют в мукоцилиарном транспорте, продвигающем лежащую выше слизь в краниальном направлении и обеспечивающем клиренс секрета и частиц. Подслизистая рыхлая соединительная ткань ниже базальной мембраны содержит пучки гладкомышечных волокон и серозно-слизистые железы. Хрящевые пластинки расположены ниже подслизистого слоя. Микроскопическая структура бронхиол, выстланных респираторных эпителием. Бокаловидные клетки участвуют в выработке слизи дыхательных путей и вставлены между реснитчатыми столбчатыми клетками. Пучки гладкомышечных волокон в подслизистом слое формируют спираль. Хрящевая ткань и бронхиальные железы отсутствуют. Первое из четырех изображений, полученных при КТ крупных дыхательных путей. Трахея — наиболее крупный сегмент дыхательных путей. Ее тонкие стенки поддерживаются переднебоковыми хрящами С-образной формы с мембранозной задней стенкой. Хрящевые кольца определяют округлую форму трахеи при вдохе. Правый и левый главные бронхи начинаются от трахеи в области киля трахеи. Главные бронхи отдают долевые бронхи. Правый главный бронх отдает правые верхнедолевые бронхи и промежуточный бронх. Левый главный бронх отдает левые верхнедолевые и нижнедолевые бронхи. Каждый долевой бронх отдает сегментарные бронхи, в свою очередь ветвящиеся на субсегментарные бронхи и, наконец, на бронхиолы. Наиболее мелкие дыхательные пути, визуализируемые в норме—бронхиолы. Мелкие дыхательные пути дистальнее мышечных бронхиол не визуализируются. КТ с высоким разрешением: изменения структуры крупных дыхательных путей. Хрящевые пластинки обеспечивают поддержку переднебоковой стенки дыхательных путей и определяют особенности формы нормальных дыхательных путей. КТ с высоким разрешением: изменения формы крупных дыхательных путей при дыхании. КТ с высоким разрешением: изменения формы крупных дыхательных путей при выдохе. Хрящи трахеи С-образной формы оказывают поддержку переднебоковым стенкам дыхательных путей при выдохе. Поскольку хрящевая ткань отсутствует в задней стенке трахеи, она изгибается в сторону просвета дыхательных путей. КТ с высоким разрешением: изменение формы дыхательных путей при выдохе. Схожие особенности отмечаются в главных бронхах, их задняя стенка при выдохе выглядит плоской. Эти морфологические изменения крупных дыхательных путей позволяют различить фазы вдоха и выдоха при КТ. Первое из четырех изображений, полученных при исследовании пациента старшего возраста с обычной кальцификацией трахеи. Рентгенография органов грудной клетки в ЗП проекции, изображение урезано: определяются кальцифицированные хрящи трахеи и бронхов, визуализируемые в виде тонких белых линий, лучше всего наблюдаемых по ходу стенок дыхательных путей. Рентгенография органов грудной клетки в боковой проекции, изображение урезано: определяются кальцификаты стенки дыхательных путей, визуализируемые в виде тонкой белой линии, лучше всего видимой по ходу передней стенки трахеи. «Волнистое» отображение кальцификатов соответствует прерывистому характеру расположения отдельных хрящей трахеи С-образной формы на всем протяжении дыхательных путей. КТ с контрастированием (мягкотканное окно), ограниченное областью средостения, аксиальный срез: определяется кальцификация хрящей главных бронхов. КТ с контрастированием (мягкотканное окно), аксиальный срез, изображение урезано до средостения: кальцифицированные хрящи главных бронхов. Кальцификация хрящей трахеи и бронхов может наблюдаться у здоровых лиц старшего возраста, что улучшает визуализацию стенок дыхательных путей при рентгенографии и позволяет определить отдельные кальцифицированные хрящи на КТ.

г) Функциональные и структурные зоны дыхательных путей:

• Проводящая зона:
о Функция:
- Только проведение воздуха
о Компоненты:
- Трахея
- Бронхи
- Бронхиолы
о Характер ветвления:
- Дихотомический: деление на два ствола
- Асимметричный: различный диаметр
о Структура:
- Нет альвеол в стенках дыхательных путей
- В эпителии газообмен не происходит

• Переходная зона:
о Функция:
- Проведение воздуха
- Дыхание
о Компоненты:
- Респираторные бронхиолы
- Альвеолярные протоки
о Характер ветвления:
- Дихотомичный
- Симметричный
- Часто деление на три или четыре ствола
о Структура:
- В стенках дыхательных путей содержатся альвеолы
- Позволяют осуществлять газообмен

• Респираторная зона:
о Функция:
- Только дыхательная
- Газообмен
о Компоненты:
- Альвеолы
- Альвеолярные мешочки
о Характер ветвления:
- Дихотомический
о Структура:
- Тонкие стенки
- Контактирует с капиллярной мембраной

Строение дыхательных путей

а) Трахея:
• Соединяет гортань с главными бронхами
• Микроскопическая анатомия:
о Эпителий:
- Псевдополосатый реснитчатый столбчатый эпителий
- Бокаловидные клетки
о Структуры подслизистого слоя:
- Подслизистые серозно-слизистые железы
о Пристеночные незамкнутые хрящевые кольца в виде лошадиной подковы (16-20)
о Сзади располагается мембранозный отдел с поперечными пучками мышечных волокон
• Функциональная анатомия:
о Реснички продвигают слизь ко входу в гортань
о Подслизистые серозно-слизистые железы секретируют воду, электролиты и слизь в просвет дыхательных путей

б) Бронхи:
• Соединяют трахею с мышечными бронхиолами
• Микроскопическая анатомия:
о Эпителий:
- Псевдополосатый реснитчатый столбчатый эпителий
- Бокаловидные клетки
о Структуры подслизистого слоя:
- Серозно-слизистые железы
- Пучки гладкомышечной ткани
о Скопления хрящевой ткани в виде полумесяца

в) Мышечные бронхиолы:
• • Микроскопическая анатомия:
о Эпителий:
- Псевдопополосатый реснитчатый столбчатый эпителий, переходящий в реснитчатый кубовидный эпителий
о Структуры подслизистого слоя:
- Расположенные в виде спирали гладкомышечные волокна
- Соединительная ткань
о Отсутствие хрящевой ткани

г) Терминальные бронхиолы:
• Последние проводящие бронхиолы
• Тонкие стенки, сниженный диаметр
• Микроскопическая анатомия:
о Выстланы реснитчатым столбчатым эпителием, переходящим в кубовидный эпителий
о Бокаловидные клетки отсутствуют
о В стенках содержится гладкомышечная и соединительная ткань

д) Респираторные бронхиолы:
• Между терминальными бронхиолами и альвеолярными протоками
• Микроскопическая анатомия:
о Выстланы реснитчатым простым кубовидным эпителием (в дистальных отделах ресничек нет)
о В стенках содержится гладкомышечная и соединительная ткань
о Стенки прерываются мелкими воздушными карманами (альвеолами)

е) Альвеолярные протоки:
• Между респираторными бронхиолами и проксимальными альвеолами/альвеолярными мешочками
• Прямые трубчатые пространства, полностью ограниченные альвеолами
• Микроскопическая анатомия
о Пучки гладкомышечных волокон в стенках отличает их от альвеол

ж) Альвеолы и альвеолярные мешочки:
• Мелкие чашевидные структуры:
о Выпячивание стенок респираторных бронхиол, альвеолярных протоков и альвеолярных мешочков
о Разделены тонкими стенками (перегородками)
• Легкие взрослых содержат - 300 миллионов альвеол
• Микроскопическая анатомия альвеолярных перегородок:
о Продолжается уплощенный плоский эпителий:
- Эпителлиальные клетки 1 типа (плоские пневмоциты) покрывают 93% поверхности альвеол
- Клетки 2 типа (круглоядерные) производят сурфактант
о Альвеолярные макрофаги:
- Межальвеолярные мигрирующие клетки
- Часть защитного механизма легких
о Прилежащие капилляры
о Промежуточная интерстициальная ткань

Основные единицы структуры легочной ткани

а) Первичная легочная долька:
• Все альвеолярные протоки, альвеолярные мешочки и альвеолы дистальнее последних респираторных бронхиол:
о Включает кровеносные сосуды, нервы и соединительную ткань
о В легких человека содержится 20-25 миллионов первичных легочных долек
• Не имеют клинического или визуализационного значения

б) Ацинус:
• Часть легкого дистальнее терминальных бронхиол, включающая:
о Респираторные бронхиолы
о Альвеолярные протоки
о Альвеолярные мешочки
о Альвеолы
о Сопутствующие сосуды и соединительная ткань
• Функциональная единица газообмена в легких
• Диаметр ацинуса составляет 6-10 мм
• В легком объемом 5,25 л содержится 25000 ацинусов

в) Вторичная легочная долька:
• Мелкие обособленные единицы легкого, окруженные соединительной тканью и междолевыми перегородками
• Структура:
о Приток воздуха обеспечивается долевыми бронхиолами, предтерминальными бронхиолами отдают:
- Более мелкие предтерминальные бронхиолами
- Терминальными бронхиолами
- Респираторными бронхиолами
о Кровоснабжаются долевыми артериями и их ветвями
о Ограничены междолевыми перегородками, содержащими легочные вены и лимфатическими сосудами
• Морфология:
о Неравномерная многогранная форма
о 1,0-2,5 см в диаметре

Топографические особенности визуализации

а) Трахея:
• Конфигурация задней стенки на КТ зависит от фазы дыхания:
о Изгибается наружу при задержке дыхания
о Уплощается и изгибается внутри во время выдоха

б) Бронхи/бронхиолы:
• Бронхи • Бронхиолы редко визуализируются в пределах 1 см от плевральной поверхности на КТ с высоким разрешением

в) Вторичная легочная долька:
• У здоровых людей в норме не визуализируется
• Наиболее развиты и лучше всего визуализируются в периферических отделах легких
• Междолевые перегородки на нижних пределах КТ в тонкосрезовом разрешении:
о Субплевральные перегородки имеют толщину около 0,1 мм
о Наиболее часто наблюдаются на верхушках, передней поверхности и вблизи средостенной плевры
о Локализацию можно предположить по определению перегородочных вен
• Толщина дольковых бронхиол соответствует наиболее низкому разрешению тонкосрезовой КТ:
о В норме не визуализируются
о Дольковые бронхиолы имеют диаметр - 1 мм
о Визуализизация зависит от толщины стенки
о Расположение можно определить по положению центральной долевой артерии

г) Ацинус:
• В норме ацинусы не визуализируются
• В эксперименте с наполнением одного ацинуса он приобрел вид розетки, затем приобретает сферический вид:
о Ацинарный/воздушный узелок

Аномалии при визуализации

а) Центродолевые узелки: инфекционный бронхиолит:
• КТ признаки:
о Мелкие узелки:
- Различная плотность
- Размер варьирует от нескольких мм до 1 см
о Центродолевое расположение:
- Расположены в 5-10 мм от плевральной поверхности
• Наблюдается при заболеваниях:
о Воспалительный (клеточный) бронхиолит:
- Воспаление/инфильтрация центролобулярных бронхиол
- Вовлечение окружающей интерстициальной ткани и альвеол
о Этиология:
- Бактериальная
- Микобактериальная
- Микотическая
- Вирусная

б) Тени по типу «дерева в почках»: инфекция мелких дыхательных путей:
• КТ:
о Линейное ветвление на периферии
о Ассоциированные центролобулярные узелки:
- Различная плотность
- Скопления узелков
- Расположены в нескольких миллиметрах от плевральной поверхности
о Картина напоминает «дерево с почками»
• Патологические сочетания:
о Инфекция мелких дыхательных путей
о Расширенные центролобулярные бронхиолы:
- Наполнение просвета бронхиол воспалительным экссуда-том/кпетками
о Околобронхиальное воспаление
о Этиология:
- Микобактериальная инфекция
- Бронхопневмония
- Инфекционный бронхиолит

в) Низкая плотность в центролобулярной области: центролобулярная эмфизема:
• КТ:
о Центролобулярные очаги (3-10 мм) низкой плотности
о Низкая плотность расположенной вблизи центролобулярной артерии
о Невыраженная стенка
• Наблюдается при заболеваниях:
о Центролобулярная (проксимальная ацинарная, центроацинарная) эмфизема:
- С вовлечением проксимального отдела ацинуса
- Растяжение и разрушение респираторных бронхиол
- Увеличенное воздушное пространство в центральном ацинусе с относительно нормальным дистальным отделом ацинуса
о Сильнее поражаются верхние доли и верхний сегмент нижних долей

г) Низкая плотность доли легкого: панлобулярная эмфизема:
• КТ:
о Диффузная широкая область низкой плотности
о Сниженный размер легочных сосудов
• Возникает при заболеваниях:
о Панлобулярная (панацинарная) эмфизема:
- Поражается весь ацинус и все ацинусы во вторичной легочной дольке
- Диффузное или с преимущественным поражением нижних долей
- Ассоциировано с недостаточностью α-1-антитрипсина

д) Низкая плотность доли легкого: парасептальная эмфизема:
• КТ:
о Кистозные области вблизи междолевых перегородок и плевры, крупных сосудов и бронхов
о Часто сочетается с центролобулярной эмфиземой
• Наблюдается при заболеваниях:
о Поражение периферических отделов легочного ацинуса и субплевральных вторичных легочных долек
о Расширенные альвеолярных ходы
о Преимущественно поражение верхней доли
о Ассоциировано с буллезной болезнью

е) Низкая плотность доли легкого: констриктивный бронхиолит:
• КТ:
о Мозаичная плотность, мозаичная перфузия
о Неоднородное распределение
о Воздушные ловушки на КТ при выдохе
• Возникает при заболеваниях:
о Концентричное сужение мембранозной части бронхиол за счет фиброза с нарушением тока воздуха в легких:
- Воздушные ловушки
- Мозаичная плотность/перфузия

ж) Ацинарные узелки: инфекция:
• КТ:
о Узелковые дымчатые тени от 6 до 10 мм
• Возникает при заболеваниях:
о Воспаление терминальных и респираторных бронхиол
о Щажение дистальных воздушных пространств
о Диссеминация инфекции по дыхательным путям:
- Туберкулез
- Ветряночная пневмония на ранних стадиях

ГБУЗ Ярославской области «Клиническая онкологическая больница», Ярославль

ФГБУ «Московский научно-исследовательский онкологический институт им. Герцена» — филиал ФГБУ «НМИРЦ» МЗ РФ, Москва, Россия, 125284

Военная медицинская часть, Голицыно, Московская область, Россия, Московский научно-исследовательский онкологический институт им. П.А. Герцена, филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия

Московский научно-исследовательский онкологический институт им. П.А. Герцена, Москва

Диагностики эндобронхиальной предопухолевой патологии и ранних форм рака легкого

Журнал: Онкология. Журнал им. П.А. Герцена. 2016;5(5): 66‑71

ГБУЗ Ярославской области «Клиническая онкологическая больница», Ярославль

В настоящее время в мире рак легкого на протяжении последних десятилетий лидирует в структуре заболеваемости и смертности у мужчин. Однако при использовании стандартных рентгеноэндоскопических методов диагностики более 70—80% впервые выявленных больных раком легкого имеют III—IV стадию заболевания, когда радикальное хирургическое лечение невозможно. Развитие центрального рака легкого имеет ступенчатый процесс: трансформация нормального эпителия в гиперпластический, формирование очагов метаплазии, дисплазии, рак in situ (CIS) и микроинвазивный рак. Диагностика рака легкого включает флюорографию, рентгенографию органов грудной клетки, рентгеновскую компьютерную томографию, цитологическое исследование мокроты. Однако ведущую роль в диагностике центрального рака легкого играет эндоскопический метод, который благодаря современным методикам (узкоспектральная эндоскопия, ауто­флюоресцентная эндоскопия, увеличительная эндоскопия) позволяет быстро и эффективно выявлять изменения слизистой оболочки трахеобронхиального дерева на разных стадиях канцерогенеза.

ГБУЗ Ярославской области «Клиническая онкологическая больница», Ярославль

ФГБУ «Московский научно-исследовательский онкологический институт им. Герцена» — филиал ФГБУ «НМИРЦ» МЗ РФ, Москва, Россия, 125284

Военная медицинская часть, Голицыно, Московская область, Россия, Московский научно-исследовательский онкологический институт им. П.А. Герцена, филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия

Московский научно-исследовательский онкологический институт им. П.А. Герцена, Москва

Рак легкого в мире на протяжении последних десятилетий остается на первом месте в структуре заболеваемости и смертности у мужчин [1, 2].

Современная медицина располагает новой аппаратурой и высокотехнологичными методиками диагностики рака легкого. В то же время, при использовании стандартных рентгеноэндоскопических методов диагностики более 70—80% впервые выявленных больных раком легкого имеют III—IV стадию заболевания [2, 3]. По данным научно-исследовательских онкологических центов России, Великобритании и Америки смертность при злокачественных опухолях легкого крайне высокая и достигает 87% от числа заболевших [1—4].

Выделяют две основные клинико-морфологические формы рака легкого, отличающиеся степенью злокачественности, частотой и характером метастазирования: 1) немелкоклеточный рак легкого (НМРЛ) и 2) мелкоклеточный рак легкого (МРЛ). К НМРЛ относятся плоскоклеточный, крупноклеточный рак и аденокарцинома. Многие авторы и сейчас пользуются этой терминологией [2, 5, 6]. Но в последних публикациях, в том числе морфологической классификации Всемирной организации здравоохранения (ВОЗ) 2015 г., каждый гистологический тип рассматривается отдельно, понятие НМРЛ не используется, хотя остается легитимным [7, 8].

Считается, что при развитии очага центрального рака легкого эпителий трахеобронхиального дерева проходит следующие ступени канцерогенеза: трансформацию нормального эпителия в гиперпластический, формирование очагов метаплазии, дисплазии, рак in situ (CIS) и микроинвазивный рак [9].

Характеристика интраэпителиальных новообразований бронхиального дерева

Очаги тяжелой дисплазии и CIS слизистой оболочки бронхов, как правило, имеют весьма незначительные размеры: 1—10 мм по плоскости и 200—300 мкм по толщине и не имеют статистически достоверного риска метастазирования [10, 11].

Микроскопические различия интраэпителиальных предраковых новообразований легких представлены в табл. 1.


Таблица 1. Микроскопические признаки плоскоклеточной дисплазии эпителия бронхов различной степени и CIS (W. Travis и соавт. [7])

В случаях формирования очагов дисплазии виде папиллярных структур, с образованием протрузий, приподнятых эпителиальных образований используется понятие ангиогенная плоскоклеточная дисплазия, которая является более агрессивной в динамике своего развития по сравнению с плоскими очагами [12].

Анализ работ, посвященных естественному развитию преинвазивных неоплазий, показал, что уровень прогрессии CIS до инвазивной опухоли оценивали от 39 до 69%, в зависимости от исследуемой группы и длительности наблюдения [13, 14]. В исследовании R. Breuer и соавт. [15] опубликованы результаты, согласно которым 32% очагов тяжелой дисплазии и 9% случаев легкой/средней дисплазии прогрессировали до CIS или инвазивной карциномы за период наблюдения от 11 до 21 мес, но при этом наблюдалась регрессия в 54% преинвазивных неоплазий разных типов.

Начальные формы инвазивного рака легкого

Согласно данным ВОЗ (2015 г.) диагноз микроинвазивная карцинома устанавливается в случае [16], когда:

— размер опухоли ≤3 см ;

— инвазивный компонент ≤5 мм.

К понятию ранний центральный рак легкого относится: рентгеннегативная опухоль, определяемая при бронхоскопии, доступная для верификации с помощью щипцовой биопсии; рост опухоли ограничен внутренними слоями стенки бронха; отсутствуют отдаленные метастазы и не вовлечены медиастинальные лимфатические узлы [17, 18].

Лучевые методы диагностики

Среди основных лучевых методов исследования для выявления рака легкого используются флюорография, рентгенография органов грудной клетки, рентгеновская компьютерная томография (КТ). Главным недостатком флюорографии легких при диагностике рака легкого является низкий уровень чувствительности и точности, а доля ложноположительных и ложноотрицательных заключений достигает 30% [19].

Согласно последним рекомендациям AJCC, рентгенография органов грудной клетки из-за низкой эффективности не рекомендована для скрининга рака легкого [20]. Для скринингового исследования в группах риска развития рака легкого рекомендуется проведение низкодозированной спиральной компьютерной томографии (СКТ) органов грудной клетки [21].

Однако центральные, поверхностно-распространяющиеся опухоли, рост которых происходит без сужения и деформации просвета, даже с помощью КТ, чаще всего выявляют уже в стадии специфической лимфаденопатии.

Цитологическое исследование мокроты

Классическим недорогим и неинвазивным методом скрининга центрального рака легкого является цитологическое исследование мокроты. Образец мокроты считается адекватным при наличии в ней макрофагов или бронхиальных альвеолярных клеток [23]. Однако большим недостатком этого метода является низкая чувствительность, которая в среднем не превышает 65% [24], из-за ошибки забора материала, технических трудностей подготовки материала, а также значительной вариабельности согласованности между специалистами. Вероятность обнаружения атипичных клеток в мокроте увеличивается при центральной локализации рака легкого, большом размере опухоли, более прогрессивных стадиях рака, плоскоклеточном раке (в отличие от аденокарциномы) [25].

Эндоскопические методы диагностики

Еще в 460—370 гг. до нашей эры Гиппократ пытался интубировать дыхательные пути пациентам, нуждающимся в экстренной нормализации дыхания. В 1895 г. отоларинголог Г. Киллиан впервые доложил об удалении инородного тела из правого главного бронха пациента с помощью ригидного бронхоскопа Я. Микулича [26].

Современное бронхологическое исследование является основным методом выявления и диагностики скрытых, ранних, рентгеннегативных форм центрального рака легкого [27, 28].

Последние десятилетия стремительно развиваются эндоскопические методики, такие как бронхоскопия с высоким разрешением изображения, аутофлюоресцентная (autofluorescence bronchoscopy (AFB)) и узкоспектральная эндоскопия (narrow band imaging (NBI)). Параллельно в разных странах идет разработка стандартов трактовки эндоскопического изображения, получаемого с помощью этих методик [29].

Бронхоскопия в белом свете

Бронхоскопия в белом свете (white light bronchoscopy (WLB)) является стандартной современной эндоскопической методикой исследования дыхательных путей, которая имеет наибольшую доказательную базу. Согласно последним (2013) клиническим рекомендациям [31] Американского Колледжа Торакальных Врачей (American College of Chest Physicians), WLB рекомендована для обследования:

— при подозрении на центральный рак легкого по результатам лучевых методов диагностики;

— при выявлении атипических клеток в цитологическом анализе мокроты;

— для динамического наблюдения при преинвазивной неоплазии бронхиального дерева;

— для обследования пациентов с инвазивным центральным раком легкого с целью уточнения границ опухоли и выявления мультифокальных дополнительных очагов рака легкого.

Несмотря на очевидные преимущества WLB в диагностике раннего центрального рака легкого по сравнению с КТ, бронхоскопия в белом свете лимитирована в идентификации интраэпителиальных очагов рака малого размера [30, 31]. Многочисленные исследования подтверждают, что сочетание WLB и новых эндоскопических технологий, таких как AFB и NBI улучшают диагностику предопухолевой патологии и ранних, малоинвазивных форм рака легкого [32—34].

Аутофлюоресцентная бронхоскопия

Спектроскопические диагностические методики исследования принято делить на фотодинамическую диагностику, при которой используются экзогенные и эндогенные фотосенсибилизаторы, и аутофлюоресцентную диагностику, основанную на регистрации флюоресцентной активности эндогенных флюорофоров и изменения оптических свойств очагов неоплазии слизистой оболочки бронхов за счет изменения концентрации в ткани аминокислот, коллагена, эластина и дыхательных ферментов (НАДН и др.) [35, 36]. Изменения аутофлюоресценции ткани связаны со многими факторами: с изменением концентрации и глубины распределения эндогенных флюорофоров; с нарушением тканевой микроархитектоники с увеличением толщины слизистой оболочки и нарушением структуры ее слоев; с изменением степени васкуляризации (концентрации гемоглобина); с изменением уровня обмена веществ в патологически измененной ткани [37, 38].

В современных эндоскопических системах в режиме аутофлюоресценции при освещении слизистой оболочки используется свет длиной волны 395—475 нм для индукции феномена аутофлюоресценции и узкий зеленый спектр света (G-спектр, 500 нм) для фиксирования отраженного изображения. Естественная собственная флюоресценция тканей и отраженный зеленый свет фиксируются специальной сверхчувствительной ПЗС-матрицей, которая располагается на дистальном конце эндоскопа. При этом электронная система искусственно окрашивает аутофлюоресцентное изображение нормальной ткани в зеленый цвет, очаги неоплазии и рака — в пурпурный цвет, синий цвет или в виде темного пятна. Полученные изображения суммируются и отображаются на экране [39].

Большинство авторов считают, что применение AFB повышает частоту выявления скрытых очагов интраэпителиальной неоплазии [40—46].

Основным недостатком AFB является ее низкая специфичность. Выявление значительного количества ложнопозитивных очагов приводит к большому количеству бесполезных гистологических исследований [47].

Узкоспектральная бронхоскопия

NBI — это сравнительно новая эндоскопическая диагностическая методика, которая представлена как альтернативная технология для оценки бронхиального эпителия и выявления раннего рака легкого [48].

Обычно при эндоскопическом исследовании используется весь видимый световой спектр от 400 до 800 нм. Для NBI-режима применяется освещение с использованием двух световых волн длиной 415 и 540 нм в диагностике сосудистых структур слизистой оболочки, так как эти световые волны хорошо поглощаются гемоглобином. Это позволяет получить детальное изображение сосудистого рисунка тканей, его изменений, характерных для патологических участков воспалительного генеза, а также для предраковых заболеваний и ранних форм рака [49].

Основоположник классификации сосудистого рисунка патологических новообразований бронхиального эпителия — K. Shibuya. В 2010 г. К. Shibuya и соавт. [49] опубликовали классификацию, в которой выделили 4 типа патологического сосудистого рисунка: извитые сосуды, точечные сосуды, спиралевидные и штопорообразные сосуды. При этом были измерены диаметры сосудов в патологическом очаге. Авторы показали, что сочетание вышеуказанных типов сосудистого рисунка соответствует неоплазии различной степени злокачественности (табл. 2).


Таблица 2. Распределение типов сосудистого рисунка при разных центральных новообразованиях легких [49]

Была доказана высокая чувствительность и специфичность NBI-режима в сочетании с бронхоскопией высокого разрешения в белом свете для выявления патологии сосудистого рисунка и подтверждена связь степени злокачественности образования с увеличением диаметра сосудов слизистой оболочки.

Другие авторы [50—52] провели исследования по изучению возможностей NBI для анализа изменений сосудистого рисунка (архитектоники) слизистой оболочки бронхиального дерева при проведении дифференциальной диагностики воспалительных и неопластических изменений.

Существует только одно проспективное исследование F. Herth и соавт. [53] по сравнению эффективности WLI, NBI и AFB. Авторы считают, что NBI может существенно увеличить специфичность в диагностике и идентификации эндобронхиальных очагов. В будущем методики NBI и AFI должны дополнять друг друга при комплексном обследовании пациентов с онкологической патологией легких.

Не решенной на данный момент задачей остается отсутствие единой валидизированной NBI-классификации сосудистых рисунков новообразований трахеобронхиального дерева.

Увеличительная бронхоскопия

Увеличительная бронхоскопия — это новейшая эндоскопическая методика, которая позволяет получить изображение поверхности слизистой оболочки бронхов с 100—110-кратным увеличением, благодаря чему возможна детальная оценка микрососудистой сети [49]. Она не является скрининговой и не имеет широкого распространения. Однако в крупных научных центрах уже ведутся работы по изучению и внедрению методики увеличительной бронхоскопии.

Таким образом, в настоящее время существует большой арсенал диагностических методик для выявления предопухолевой патологии и рака легкого на ранних стадиях. Ведущую роль в диагностике центрального рака легкого играет эндоскопический метод, который, благодаря современным методикам, позволяет быстро и эффективно выявлять изменения слизистой оболочки трахеобронхиального дерева на разных стадиях опухолевого процесса. Одним из перспективных направлений в совершенствовании современных эндоскопических методик является разработка автоматизированных систем поддержки принятия клинического решения, которые помогают врачу в интерпретации многофакторного эндоскопического исследования при использовании сложных эндоскопических оптических технологий.

Fact-checked

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

Правый главный бронх является как бы продолжением трахеи. Длина его от 28 до 32 мм, диаметр просвета 12-16 мм. Левый главный бронх длиной 40-50 мм имеет ширину от 1 0 до 1 3 мм.

По направлению к периферии главные бронхи дихотомически делятся на долевые, сегментарные, субсегментарные и далее вплоть до терминальных и респираторных бронхиол. Однако встречается и разделение на 3 ветви (трифуркация) и более.

Правый главный бронх делится на верхнедолевой и промежуточный, а промежуточный - на среднедолевой и нижнедолевой. Левый главный бронх делится на верхнедолевой и нижнедолевой. Общее количество генераций дыхательных путей вариабельно. Начиная от главного бронха и кончая альвеолярными мешками максимальное число генераций достигает 23 - 26.

Бронхи

Главные бронхи - это бронхи первого порядка, долевые бронхи - второго, сегментарные бронхи - третьего порядка и т. д.

Бронхи с 4-й по 13-ю генерацию имеют диаметр около 2 мм, общее число таких бронхов 400. В терминальных бронхиолах диаметр колеблется от 0,5 до 0,6 мм. Длина воздухопроводящих путей от гортани до ацинусов составляет 23-38 см.

Бронхи

Правый и левый главные бронхи (bronchi principles dexter et sinister) начинаются от бифуркации трахеи на уровне верхнего края V грудного позвонка и направляются к воротам соответственно правого и левого легких. В области ворот легких каждый главный бронх делится на долевые (бронхи второго порядка). Над левым главным бронхом располагается дуга аорты, над правым - непарная вена. Правый главный бронх имеет более вертикальное положение и меньшую длину (около 3 см), чем левый главный бронх (4-5 см в длину). Правый главный бронх шире (диаметр 1,6 см), чем левый (1,3 см). Стенки главных бронхов имеют такое же строение, как и стенки трахеи. Изнутри стенки главных бронхов выстланы слизистой оболочкой, снаружи покрыты адвентицией. Основой стенок являются не замкнутые сзади хрящи. В составе правого главного бронха насчитывается 6-8 хрящевых полуколец, у левого - 9-12 хрящей.

Иннервация трахеи и главных бронхов: ветви правого и левого возвратных гортанных нервов и симпатических стволов.

Кровоснабжение: ветви нижней щитовидной, внутренней грудной артерии, грудной части аорты. Венозный отток осуществляется в плечеголовные вены.

Бронхи

Бронхи

Отток лимфы: в глубокие шейные латеральные (внутренние яремные) лимфатические узлы, пред- и паратрахеальные, верхние и нижние трахеобронхиальные лимфатические узлы.

trusted-source

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

Гистологическое строение бронхов

Снаружи трахея и крупные бронхи покрыты рыхлым соединительнотканным футляром - адвентицией. Наружная оболочка (адвентиция) состоит из рыхлой соединительной гкани, содержащей в крупных бронхах жировые клетки. В ней проходят кровеносные лимфатические сосуды и нервы. Адвентиция нечетко отграничена от перибронхиальной соединительной ткани и вместе с последней обеспечивает возможность некоторого смещения бронхов по отношению к окружающим частям легких.

Далее по направлению внутрь идут фиброзно-хрящевой и частично мышечный слои, подслизистый слой и слизистая оболочка. В фиброзном слое кроме хрящевых полуколец имеется сеть эластических волокон. Фиброзно-хрящевая оболочка трахеи при помощи рыхлой соединительной ткани соединяется с соседними органами.

Передняя и боковые стенки трахеи и крупных бронхов образованы хрящами и расположенными между ними кольцевидными связками. Хрящевой скелет главных бронхов состоит из полуколец гиалинового хряща, которые по мере уменьшения диаметра бронхов уменьшаются в размерах и приобретают характер эластического хряща. Таким образом, из гиалинового хряща состоят только крупные и средние бронхи. Хрящи занимают 2/3 окружности, мембранозная часть - 1/3. Они образуют фиброзно-хрящевой остов, который обеспечивает сохранение просвета трахеи и бронхов.

Мышечные пучки сосредоточены в мембранозной части трахеи и главных бронхов. Различают поверхностный, или наружный, слой, состоящий из редких продольных волокон, и глубокий, или внутренний, представляющий собой сплошную тонкую оболочку, сформированную поперечными волокнами. Мышечные волокна располагаются не только между концами хряща, но и заходят в межкольцевые промежутки хрящевой части трахеи и в большей степени главных бронхов. Таким образом, в трахее пучки гладких мышц с поперечным и косым расположением находятся только в мембранозной части, т. е. мышечный слой как таковой отсутствует. В главных бронхах редкие группы гладких мышц имеются по всей окружности.

С уменьшением диаметра бронхов мышечный слой становится сильнее развитым, а волокна его идут в несколько косом направлении. Сокращение мышц вызывает не только с у -жение просвета бронхов, но и некоторое укорочение их, благодаря чему бронхи участвуют в выдохе за счет сокращения емкости дыхательных путей. Сокращение мышц позволяет сузить просвет бронхов на 1/4. При вдохе бронх удлиняется и расширяется. Мышцы достигают респираторных бронхиол 2-го порядка.

Кнутри от мышечного слоя находится подслизистый слой, состоящий из рыхлой соединительной ткани. В нем располагаются сосудистые и нервные образования, подслизистая лимфатическая сеть, лимфоидная ткань и значительная часть бронхиальных желез, которые относятся к трубчато-ацинозному типу со смешанной слизисто-серозной секрецией. Они состоят из концевых отделов и выводных протоков, которые открываются колбовидными расширениями на поверхности слизистой оболочки. Сравнительно большая длина протоков способствует длительному течению бронхитов при воспалительных процессах в железах. Атрофия желез может привести к высыханию слизистой оболочки и воспалительным изменениям.

Наибольшее число крупных желез имеется над бифуркацией трахеи и в области деления главных бронхов на долевые бронхи. У здорового человека в сутки выделяется до 100 мл секрета. На 95% он состоит из воды, а на 5% приходится равное количество белков, солей, липидов и неорганических веществ. В секрете преобладают муцины (высокомолекулярные гликопротеины). К настоящему времени насчитывается 14 видов гликопротеинов, 8 из которых содержатся в респираторной системе.

Слизистая оболочка бронхов

Слизистая оболочка состоит из покровного эпителия, базальной мембраны, собственной пластинки слизистой оболочки и мышечной пластинки слизистой оболочки.

Бронхиальный эпителий содержит высокие и низкие базальные клетки, каждая из которых прикреплена к базальной мембране. Толщина базальной мембраны колеблется от 3,7 до 10,6 мкм. Эпителий трахеи и крупных бронхов многорядный, цилиндрический, мерцательный. Толщина эпителия на уровне сегментарных бронхов составляет от 37 до 47 мкм. В его составе различают 4 основных типа клбток: реснитчатые, бокаловидные, промежуточные и базальные. Кроме того, встречаются серозные, щеточные, клетки Клара и Кульчицкого.

Реснитчатые клетки преобладают на свободной поверхности эпителиального пласта (Романова Л.К., 1984). Они имеют неправильную призматическую форму и овальное пузырьковидное ядро, расположенное в средней части клетки. Электроннооптическая плотность цитоплазмы невелика. Митохондрий немного, эндоплазматический гранулярный ретикулум развит слабо. Каждая клетка несет на своей поверхности короткие микроворсинки и около 200 мерцательных ресничек толщиной 0,3 мкм и длиной около 6 мкм. У человека плотность расположения ресничек составляет 6 мкм 2 .

Между соседними клетками образуются пространства; между собой клетки соединяются с помощью пальцеобразных выростов цитоплазмы и десмосом.

Популяция реснитчатых клеток по степени дифференцировки их апикальной поверхности подразделяется на следующие группы:

  1. Клетки, находящиеся в фазе формирования базальных телец и аксонем. Реснички в это время на апикальной поверхности отсутствуют. В этот период происходит накопление центриолей, которые перемещаются к апикальной поверхности клеток, и формирование базальных телец, из которых начинают образовываться аксонемы ресничек.
  2. Клетки, находящиеся в фазе умеренно выраженного цилиогенеза и роста ресничек. На апикальной поверхности таких клеток появляется небольшое количество ресничек, длина которых составляет 1/2-2/3 от длины ресничек дифференцированных клеток. В этой фазе на апикальной поверхности преобладают микроворсинки.
  3. Клетки, находящиеся в фазе активного цилиогенеза и роста ресничек. Апикальная по-верхность таких клеток уже почти целиком покрыта ресничками, размеры которых соответствуют размерам ресничек клеток, находящихся в предшествующей фазе цилиогенеза.
  4. Клетки, находящиеся в фазе завершенного цилиогенеза и роста ресничек. Апикальная поверхность таких клеток целиком покрыта густо расположенными длинными ресничками. На электронограммах видно, что реснички рядом расположенных клеток ориентированы в одном направлении и изогнуты. Это является выражением мукоцилиарного транспорта.

Все эти группы клеток хорошо различимы на фотографиях, полученных с помощью световой электронной микроскопии (СЭМ).

Реснички прикреплены к базальным тельцам, находящимся в апикальной части клетки. Аксонема реснички образована микротрубочками, из которых 9 пар (дуплеты) расположены по периферии, а 2 единичных (синглеты) - в центре. Дуплеты и синглеты соединены некси-новыми фибриллами. На каждом из дуплетов с одной стороны имеются 2 короткие «ручки», в которых содержится АТФ-аза, участвующая в освобождении энергии АТФ. Благодаря такой структуре реснички ритмично колеблются с частотой 16-17 в направлении носоглотки.

Они перемещают слизистую пленку, покрывающую эпителий, со скоростью около 6 мм/мин, обеспечивая тем самым непрерывную дренажную функцию бронха.

Реснитчатые эпителиоциты, по мнению большинства исследователей, находятся на стадии конечной дифференцировки и не способны к делению митозом. Согласно современной концепции, базальные клетки являются предшественниками промежуточных клеток, которые могут дифференцироваться в реснитчатые клетки.

Бокаловидные клетки, как и реснитчатые, достигают свободной поверхности эпителиального пласта. В мембранозной части трахеи и крупных бронхов на долю реснитчатых клеток приходится до 70-80%, а на долю бокаловидных - не более 20-30%. В тех местах, где по периметру трахеи и бронхов имеются хрящевые полукольца, обнаруживаются зоны с разным соотношением реснитчатых и бокаловидных клеток:

  1. с преобладанием реснитчатых клеток;
  2. с почти равным соотношением реснитчатых и секреторных клеток;
  3. с преобладанием секреторных клеток;
  4. с полным или почти полным отсутствием реснитчатых клеток («безреснитчатые»).

Бокаловидные клетки являются одноклеточными железами мерокринового типа, выделяющими слизистый секрет. Форма клетки и расположение ядра зависят от фазы секреции и заполнения надъядерной части гранулами слизи, которые сливаются в более крупные гранулы и характеризуются малой электронной плотностью. Бокаловидные клетки имеют удлиненную форму, которая во время накопления секрета принимает вид бокала с основанием, расположенным на базальной мембране и интимно связанным с ней. Широкий конец клетки куполообразно выступает на свободной поверхности и снабжен микроворсинками. Цитоплазма электронноплотная, ядро округлое, эндоплазматическая сеть шероховатого типа, хорошо развита.

Бокаловидные клетки распределены неравномерно. При сканирующей электронной микроскопии было выявлено, что различные зоны эпителиального пласта содержат неоднородные участки, состоящие либо только из реснитчатых эпителиоцитов, либо только из секреторных клеток. Однако сплошные скопления бокаловидных клеток сравнительно немногочисленны. По периметру на срезе сегментарного бронха здорового человека имеются участки, где соотношение реснитчатых эпителиоцитов и бокаловидных клеток составляет 4:1-7:1, а в других областях это соотношение равно 1:1.

Число бокаловидных клеток уменьшается в бронхах дистально. В бронхиолах бокаловидные клетки замещаются клетками Клара, участвующими в выработке серозных компонентов слизи и альвеолярной гипофазы.

В мелких бронхах и бронхиолах бокаловидные клетки в норме отсутствуют, но могут появляться при патологии.

В 1986 г. чешские ученые изучали реакцию эпителия воздухоносных путей кроликов на пероральное введение различных муколитических веществ. Оказалось, что клетками-мишенями действия муколитиков служат бокаловидные клетки. После выведения слизи бокаловидные клетки, как правило, дегенерируют и постепенно удаляются из эпителия. Степень повреждения бокаловидных клеток зависит от введенного вещества: наибольший раздражающий эффект дает ласольван. После введения бронхолизина и бромгексина происходит массивная дифференцировка новых бокаловидных клеток в эпителии воздухоносных путей, следствием чего является гиперплазия бокаловидных клеток.

Базальные и промежуточные клетки расположены в глубине эпителиального пласта и не достигают свободной поверхности. Это наименее дифференцированные клеточные формы, за счет которых в основном осуществляется физиологическая регенерация. Форма промежуточных клеток удлиненная, базальных - неправильно-кубическая. У тех и других - округлое, богатое ДНК ядро и небольшое количество цитоплазмы, имеющей большую плотность в базальных клетках.

Базальные клетки способны давать начало как реснитчатым, так и бокаловидным клеткам.

Секреторные и реснитчатые клетки объединяются под названием «мукоцилиарный аппарат».

Процесс передвижения слизи в воздухоносных путях легких называется мукоцилиарным клиренсом. Функциональная эффективность МЦК зависит от частоты и синхронности движения ресничек мерцательного эпителия, а также, что очень важно, от характеристики и реологических свойств слизи, т. е. от нормальной секреторной способности бокаловидных клеток.

Серозные клетки немногочисленны, достигают свободной поверхности эпителия и отличаются мелкими электронноплотными гранулами белкового секрета. Цитоплазма также электронноплотная. Хорошо развиты митохондрии и шероховатый ретикулум. Ядро округлое, обычно находится в средней части клетки.

Секреторные клетки, или клетки Клара, наиболее многочисленны в мелких бронхах и бронхиолах. Они, как и серозные, содержат мелкие электронноплотные гранулы, но отличаются малой электронной плотностью цитоплазмы и преобладанием гладкого, эндоплаз-матического ретикулума. Округлое ядро находится в средней части клетки. Клетки Клара участвуют в образовании фосфолипидов и, возможно, в выработке сурфактанта. В условиях повышенного раздражения они, по-видимому, могут превращаться в бокаловидные клетки.

Щеточные клетки несут на свободной поверхности микроворсинки, но лишены ресничек. Цитоплазма их малой электронной плотности, ядро овальное, пузырьковидное. В руководстве Хэма А. и Кормака Д. (1982) они рассматриваются как бокаловидные клетки, выделившие свой секрет. Им приписывается множество функций: абсорбционная, сократительная, секреторная, хеморецепторная. Однако в воздухоносных путях человека они практически не исследованы.

Клетки Кульчицкого встречаются на всем протяжении бронхиального дерева в основании эпителиального пласта, отличаясь от базальных малой электронной плотностью цитоплазмы и наличием мелких гранул, которые выявляются под электронным микроскопом и под световым при импрегнации серебром. Их относят к нейросекреторным клеткам APUD - системы.

Под эпителием находится базальная мембрана, которая состоит из коллагеновых и неколлагеновых гликопротеидов; она обеспечивает поддержку и прикрепление эпителия, участвует в метаболизме и иммунологических реакциях. Состояние базальной мембраны и подлежащей соединительной ткани обусловливает структуру и функцию эпителия. Собственной пластинкой называют слой рыхлой соединительной ткани между базальной мембраной и мышечным слоем. В ней находятся фибробласты, коллагеновые и эластические волокна. В собственной пластинке имеются кровеносные и лимфатические сосуды. Капилляры достигают базальной мембраны, но не проникают в нее.

В слизистой оболочке трахеи и бронхов, преимущественно в собственной пластинке и возле желез, в подслизистой постоянно присутствуют свободные клетки, которые могут проникать через эпителий в просвет. Среди них преобладают лимфоциты, реже встречаются плазматические клетки, гистиоциты, тучные клетки (лаброциты), нейтрофильные и эозинофильные лейкоциты. Постоянное нахождение лимфоидных клеток в слизистой оболочке бронхов обозначается специальным термином «бронхоассоциированная лимфоидная ткань» (БАЛТ) и рассматривается в качестве иммунологической защитной реакции на антигены, проникающие с воздухом в дыхательные пути.

trusted-source

[11], [12], [13], [14], [15], [16], [17]

Читайте также: