Каким эпителием покрыты терминальные бронхиолы

Обновлено: 28.04.2024

, bronchioli. Являются продолжением бронхов, в их стенке отсутствует хрящ. В самом начале они выстланы многорядным цилиндрическим реснитчатым эпителием, который в терминальных отделах переходит в кубический. Рис. А.

Дыхательные бронхиолы

, bronchioli respiratorii. Конечные отделы бронхиол, на стенке которых появляются отдельные альвеолы. Рис. А.

Альвеолярные ходы

, ductuli alveolares. Конечные ветви дыхательных бронхиол, на стенке которых находится большое количество альвеол. Рис. А.

Альвеолярные мешочки

Альвеолы легкого

, alveoli pulmonis. Слепые выпячивания стенки дыхательных бронхиол, альвеолярных ходов и мешочков, диаметром 0,1 - 0,9 мм. Через их тонкую стенку осуществляется газообмен. Рис. А.

ГРУДНАЯ ПОЛОСТЬ

, сavitas thoracis (thoraciса). Ограничена ребрами, грудным отделом позвоночного столба, грудиной и снизу - диафрагмой. Рис. Б, Рис. В.

Плевролегочные области

Внутригрудная фасция

, fascia endothoracica. Подвижный слой рыхлой соединительной ткани между париетальной плеврой и стенкой грудной клетки. Рис. Б.

Надплевральная мембрана [[Сибсона]]

, membrana suprapleuralis [[Sibson]]. Утолщение внутригрудной фасции в области купола плевры. Рис. Б.

Диафрагмоплевральная фасция

, fascia phrenicopleuralis. Часть внутригрудной фасции, которая расположена между париетальной плеврой и диафрагмой. Рис. Б.

Плевральная полость

, cavitas pleuralis. Капиллярное, щелевидное пространство между париетальной и висцеральной плеврой, содержащее незначительное количество серозной жидкости. Рис. Б, Рис. В.

Плевра

, pleura. Серозная оболочка, состоящая из рыхлой соединительной ткани, покрытой однослойным плоским эпителием. Представлена париетальным и висцеральным листками, переходящими один в другой у ворот легкого. Висцеральная плевра покрывает легкие; париетальная - боковые стенки грудной клетки, диафрагму и ограничивает средостение. Рис. Б.

Купол плевры

, cupula pleurae. Покрывает верхушку легкого и является границей между шеей и грудной клеткой. Рис. Б.

Висцеральная (легочная) плевра

Париетальная плевра

Медиастинальная часть (медиастинальная плевра)

Реберная часть (реберная плевра)

Диафрагмальная часть (диафрагмальная плевра)

Плевральные синусы

, recessus pleurales. Щелевидные пространства, образованные париетальной плеврой, в которые легкое заходит во время вдоха.

Реберно-диафрагмальный синус

, recessus costodiaphragmaticus. Расположен между боковой стенкой грудной полости и диафрагмой. Рис. Б.

Реберно-медиастинальный синус

, recessus costomediastinalis. Расположен в переднем отделе грудной полости между реберной и медиастинальной частями париетальной плевры. Выражен больше слева. Рис. В.

Диафрагмомедиастинальный синус

, recessus phrenicomediastinalis. Расположен в дорсальном отделе грудной клетки между диафрагмальной и медиастинальной частями париетальной плевры.

Легочная связка

, lig. pulmonale. Состоит из двух листков медиастинальной плевры, которые идут ниже корня легкого от латеральной поверхности пищевода к медиальной поверхности легкого и переходят в висцеральную плевру. Рис. Б. См. с. 149, Рис. Б, Рис. Г.

Средостение

, mediastinum. Область грудной полости, расположенная между двумя плевральными мешками. Спереди ограничена задней поверхностью грудины, сзади - передней поверхностью позвоночного столба. Рис. Б.

Верхнее средостение

, mediastinum superior. Часть средостения, расположенная выше сердца. Содержит дугу аорты с ее ветвями, плечеголовные вены, верхнюю полую вену, трахею, пищевод, блуждающие нервы, грудной проток, вилочковую железу и др. Рис. Б.

Нижнее средостение

Переднее средостение

Среднее средостение

Заднее средостение

, mediastinum posterius. Расположено между перикардом и позвоночным столбом. Содержит пищевод, блуждающие нервы, нисходящую часть аорты, грудной проток, непарную и полунепарную вены. Рис. В.

а) Дыхательные пути:
• Трубчатые структуры
• Проводят воздух через просвет
• Анатомические отделы (от проксимальных к дистальным):
о Трахея
о Бронхи
о Бронхиолы
о Терминальные бронхиолы
о Респираторные бронхиолы
о Альвеолярные протоки
о Альвеолярные мешочки
о Альвеолы

б) Ветви дыхательных путей:
• Порядки дыхательных путей:
о Образуется 23 порядка дихотомически ветвящихся бронхов ниже киля трахеи
о Между терминальными бронхиолами и альвеолярными мешочками располагается 2-12 порядков (обычно 6-8)
о В каждом альвеолярном мешочке расположено 4-29 (обычно 10) альвеол
• Типы дыхательных путей:
о Бронхи:
- >1 мм в диаметре
- Сужаются и ветвятся
- Отдают бесхрящевые бронхиолы
о Бронхиолы:
- - Наиболее дистальные бронхиолы, выстланные дахательным эпителием, являются терминальными бронхиолами
о Терминальные бронхиолы:
- Наиболее дистальные воздухопроводящие пути
- Отдают - три порядка альвеолярных протоков
о Респираторные бронхиолы:
- Повышается число альвеол в их стенках
- Отдают три порядка альвеолярных протоков
о Альвеолярные протоки:
- Несколько расположенных рядом альвеол
- Оканчиваются альвеолярными мешочками
о Альвеолярные мешочки:
- Группы или скопления наиболее дистальных альвеол
о Альвеолы

в) Функция дыхательных путей:
• Проведение воздуха через просвет
• Газообмен между вдыхаемым воздухом и кровью:
о Доставка кислорода к альвеолам
о Выведение углекислого газа в атмосферу

На рисунке показаны 24 порядка дихотомического ветвления дыхательных путей от трахеи к наиболее дистальным отделам дыхательных путей, составляющим вторичную легочную дольку. Вторичная легочная долька—наиболее мелкая структурная единица легкого, окруженная соединительной тканью и имеющая многогранную форму. Каждая вторичная легочная долька содержит дистальные ветви долевой бронхиолы и сопровождающую ее легочную (дольковую) артерию. Ацинус состоит их дыхательных путей дистальнее терминальных бронхиол, каждая вторичная легочная долька содержит до 12 ацинусов. Терминальные бронхиолы отдают 2-3 респираторных бронхиолы, в свою очередь отдающих три альвеолярных протока, каждый из которых заканчивается альвеолярным мешочком или альвеолой. Респираторные бронхиолы характеризуются альвеолами в их стенке. Стенки альвеолярных протоков покрыты альвеолами. Альвеолярные мешочки оканчиваются скоплениями альвеол. Телескопический вид дыхательных путей, демонстрирующий размер и структурные особенности стенки различных типовдыхательных путей в виде уменьшения числа и размеров хрящевых пластинок. Хрящевые пластинки, наблюдаемые в дыхательных путях крупного и среднего калибра (трахея и бронхи), в бронхах среднего калибра постепенно уменьшаются в размерах и количестве. Стенки мелких дыхательных путей (бронхиол) не содержат хрящевой ткани. Дистальные скопления альвеол и альвеолярные мешочки образуют ацинус — функциональную единицу газообмена в легочной ткани. Ацинусами называют дыхательные пути, сосуды и поддерживающие структуры расположенные дистальнее терминальной бронхиолы. Микроскопическая структура крупных дыхательных путей, содержащих хрящевую ткань. Эти дыхательные пути выстланы псевдополосатым реснитчатым столбчатым (респираторным) эпителием, лежащим на базальной мембране. Реснички участвуют в мукоцилиарном транспорте, продвигающем лежащую выше слизь в краниальном направлении и обеспечивающем клиренс секрета и частиц. Подслизистая рыхлая соединительная ткань ниже базальной мембраны содержит пучки гладкомышечных волокон и серозно-слизистые железы. Хрящевые пластинки расположены ниже подслизистого слоя. Микроскопическая структура бронхиол, выстланных респираторных эпителием. Бокаловидные клетки участвуют в выработке слизи дыхательных путей и вставлены между реснитчатыми столбчатыми клетками. Пучки гладкомышечных волокон в подслизистом слое формируют спираль. Хрящевая ткань и бронхиальные железы отсутствуют. Первое из четырех изображений, полученных при КТ крупных дыхательных путей. Трахея — наиболее крупный сегмент дыхательных путей. Ее тонкие стенки поддерживаются переднебоковыми хрящами С-образной формы с мембранозной задней стенкой. Хрящевые кольца определяют округлую форму трахеи при вдохе. Правый и левый главные бронхи начинаются от трахеи в области киля трахеи. Главные бронхи отдают долевые бронхи. Правый главный бронх отдает правые верхнедолевые бронхи и промежуточный бронх. Левый главный бронх отдает левые верхнедолевые и нижнедолевые бронхи. Каждый долевой бронх отдает сегментарные бронхи, в свою очередь ветвящиеся на субсегментарные бронхи и, наконец, на бронхиолы. Наиболее мелкие дыхательные пути, визуализируемые в норме—бронхиолы. Мелкие дыхательные пути дистальнее мышечных бронхиол не визуализируются. КТ с высоким разрешением: изменения структуры крупных дыхательных путей. Хрящевые пластинки обеспечивают поддержку переднебоковой стенки дыхательных путей и определяют особенности формы нормальных дыхательных путей. КТ с высоким разрешением: изменения формы крупных дыхательных путей при дыхании. КТ с высоким разрешением: изменения формы крупных дыхательных путей при выдохе. Хрящи трахеи С-образной формы оказывают поддержку переднебоковым стенкам дыхательных путей при выдохе. Поскольку хрящевая ткань отсутствует в задней стенке трахеи, она изгибается в сторону просвета дыхательных путей. КТ с высоким разрешением: изменение формы дыхательных путей при выдохе. Схожие особенности отмечаются в главных бронхах, их задняя стенка при выдохе выглядит плоской. Эти морфологические изменения крупных дыхательных путей позволяют различить фазы вдоха и выдоха при КТ. Первое из четырех изображений, полученных при исследовании пациента старшего возраста с обычной кальцификацией трахеи. Рентгенография органов грудной клетки в ЗП проекции, изображение урезано: определяются кальцифицированные хрящи трахеи и бронхов, визуализируемые в виде тонких белых линий, лучше всего наблюдаемых по ходу стенок дыхательных путей. Рентгенография органов грудной клетки в боковой проекции, изображение урезано: определяются кальцификаты стенки дыхательных путей, визуализируемые в виде тонкой белой линии, лучше всего видимой по ходу передней стенки трахеи. «Волнистое» отображение кальцификатов соответствует прерывистому характеру расположения отдельных хрящей трахеи С-образной формы на всем протяжении дыхательных путей. КТ с контрастированием (мягкотканное окно), ограниченное областью средостения, аксиальный срез: определяется кальцификация хрящей главных бронхов. КТ с контрастированием (мягкотканное окно), аксиальный срез, изображение урезано до средостения: кальцифицированные хрящи главных бронхов. Кальцификация хрящей трахеи и бронхов может наблюдаться у здоровых лиц старшего возраста, что улучшает визуализацию стенок дыхательных путей при рентгенографии и позволяет определить отдельные кальцифицированные хрящи на КТ.

г) Функциональные и структурные зоны дыхательных путей:

• Проводящая зона:
о Функция:
- Только проведение воздуха
о Компоненты:
- Трахея
- Бронхи
- Бронхиолы
о Характер ветвления:
- Дихотомический: деление на два ствола
- Асимметричный: различный диаметр
о Структура:
- Нет альвеол в стенках дыхательных путей
- В эпителии газообмен не происходит

• Переходная зона:
о Функция:
- Проведение воздуха
- Дыхание
о Компоненты:
- Респираторные бронхиолы
- Альвеолярные протоки
о Характер ветвления:
- Дихотомичный
- Симметричный
- Часто деление на три или четыре ствола
о Структура:
- В стенках дыхательных путей содержатся альвеолы
- Позволяют осуществлять газообмен

• Респираторная зона:
о Функция:
- Только дыхательная
- Газообмен
о Компоненты:
- Альвеолы
- Альвеолярные мешочки
о Характер ветвления:
- Дихотомический
о Структура:
- Тонкие стенки
- Контактирует с капиллярной мембраной

Строение дыхательных путей

а) Трахея:
• Соединяет гортань с главными бронхами
• Микроскопическая анатомия:
о Эпителий:
- Псевдополосатый реснитчатый столбчатый эпителий
- Бокаловидные клетки
о Структуры подслизистого слоя:
- Подслизистые серозно-слизистые железы
о Пристеночные незамкнутые хрящевые кольца в виде лошадиной подковы (16-20)
о Сзади располагается мембранозный отдел с поперечными пучками мышечных волокон
• Функциональная анатомия:
о Реснички продвигают слизь ко входу в гортань
о Подслизистые серозно-слизистые железы секретируют воду, электролиты и слизь в просвет дыхательных путей

б) Бронхи:
• Соединяют трахею с мышечными бронхиолами
• Микроскопическая анатомия:
о Эпителий:
- Псевдополосатый реснитчатый столбчатый эпителий
- Бокаловидные клетки
о Структуры подслизистого слоя:
- Серозно-слизистые железы
- Пучки гладкомышечной ткани
о Скопления хрящевой ткани в виде полумесяца

в) Мышечные бронхиолы:
• • Микроскопическая анатомия:
о Эпителий:
- Псевдопополосатый реснитчатый столбчатый эпителий, переходящий в реснитчатый кубовидный эпителий
о Структуры подслизистого слоя:
- Расположенные в виде спирали гладкомышечные волокна
- Соединительная ткань
о Отсутствие хрящевой ткани

г) Терминальные бронхиолы:
• Последние проводящие бронхиолы
• Тонкие стенки, сниженный диаметр
• Микроскопическая анатомия:
о Выстланы реснитчатым столбчатым эпителием, переходящим в кубовидный эпителий
о Бокаловидные клетки отсутствуют
о В стенках содержится гладкомышечная и соединительная ткань

д) Респираторные бронхиолы:
• Между терминальными бронхиолами и альвеолярными протоками
• Микроскопическая анатомия:
о Выстланы реснитчатым простым кубовидным эпителием (в дистальных отделах ресничек нет)
о В стенках содержится гладкомышечная и соединительная ткань
о Стенки прерываются мелкими воздушными карманами (альвеолами)

е) Альвеолярные протоки:
• Между респираторными бронхиолами и проксимальными альвеолами/альвеолярными мешочками
• Прямые трубчатые пространства, полностью ограниченные альвеолами
• Микроскопическая анатомия
о Пучки гладкомышечных волокон в стенках отличает их от альвеол

ж) Альвеолы и альвеолярные мешочки:
• Мелкие чашевидные структуры:
о Выпячивание стенок респираторных бронхиол, альвеолярных протоков и альвеолярных мешочков
о Разделены тонкими стенками (перегородками)
• Легкие взрослых содержат - 300 миллионов альвеол
• Микроскопическая анатомия альвеолярных перегородок:
о Продолжается уплощенный плоский эпителий:
- Эпителлиальные клетки 1 типа (плоские пневмоциты) покрывают 93% поверхности альвеол
- Клетки 2 типа (круглоядерные) производят сурфактант
о Альвеолярные макрофаги:
- Межальвеолярные мигрирующие клетки
- Часть защитного механизма легких
о Прилежащие капилляры
о Промежуточная интерстициальная ткань

Основные единицы структуры легочной ткани

а) Первичная легочная долька:
• Все альвеолярные протоки, альвеолярные мешочки и альвеолы дистальнее последних респираторных бронхиол:
о Включает кровеносные сосуды, нервы и соединительную ткань
о В легких человека содержится 20-25 миллионов первичных легочных долек
• Не имеют клинического или визуализационного значения

б) Ацинус:
• Часть легкого дистальнее терминальных бронхиол, включающая:
о Респираторные бронхиолы
о Альвеолярные протоки
о Альвеолярные мешочки
о Альвеолы
о Сопутствующие сосуды и соединительная ткань
• Функциональная единица газообмена в легких
• Диаметр ацинуса составляет 6-10 мм
• В легком объемом 5,25 л содержится 25000 ацинусов

в) Вторичная легочная долька:
• Мелкие обособленные единицы легкого, окруженные соединительной тканью и междолевыми перегородками
• Структура:
о Приток воздуха обеспечивается долевыми бронхиолами, предтерминальными бронхиолами отдают:
- Более мелкие предтерминальные бронхиолами
- Терминальными бронхиолами
- Респираторными бронхиолами
о Кровоснабжаются долевыми артериями и их ветвями
о Ограничены междолевыми перегородками, содержащими легочные вены и лимфатическими сосудами
• Морфология:
о Неравномерная многогранная форма
о 1,0-2,5 см в диаметре

Топографические особенности визуализации

а) Трахея:
• Конфигурация задней стенки на КТ зависит от фазы дыхания:
о Изгибается наружу при задержке дыхания
о Уплощается и изгибается внутри во время выдоха

б) Бронхи/бронхиолы:
• Бронхи • Бронхиолы редко визуализируются в пределах 1 см от плевральной поверхности на КТ с высоким разрешением

в) Вторичная легочная долька:
• У здоровых людей в норме не визуализируется
• Наиболее развиты и лучше всего визуализируются в периферических отделах легких
• Междолевые перегородки на нижних пределах КТ в тонкосрезовом разрешении:
о Субплевральные перегородки имеют толщину около 0,1 мм
о Наиболее часто наблюдаются на верхушках, передней поверхности и вблизи средостенной плевры
о Локализацию можно предположить по определению перегородочных вен
• Толщина дольковых бронхиол соответствует наиболее низкому разрешению тонкосрезовой КТ:
о В норме не визуализируются
о Дольковые бронхиолы имеют диаметр - 1 мм
о Визуализизация зависит от толщины стенки
о Расположение можно определить по положению центральной долевой артерии

г) Ацинус:
• В норме ацинусы не визуализируются
• В эксперименте с наполнением одного ацинуса он приобрел вид розетки, затем приобретает сферический вид:
о Ацинарный/воздушный узелок

Аномалии при визуализации

а) Центродолевые узелки: инфекционный бронхиолит:
• КТ признаки:
о Мелкие узелки:
- Различная плотность
- Размер варьирует от нескольких мм до 1 см
о Центродолевое расположение:
- Расположены в 5-10 мм от плевральной поверхности
• Наблюдается при заболеваниях:
о Воспалительный (клеточный) бронхиолит:
- Воспаление/инфильтрация центролобулярных бронхиол
- Вовлечение окружающей интерстициальной ткани и альвеол
о Этиология:
- Бактериальная
- Микобактериальная
- Микотическая
- Вирусная

б) Тени по типу «дерева в почках»: инфекция мелких дыхательных путей:
• КТ:
о Линейное ветвление на периферии
о Ассоциированные центролобулярные узелки:
- Различная плотность
- Скопления узелков
- Расположены в нескольких миллиметрах от плевральной поверхности
о Картина напоминает «дерево с почками»
• Патологические сочетания:
о Инфекция мелких дыхательных путей
о Расширенные центролобулярные бронхиолы:
- Наполнение просвета бронхиол воспалительным экссуда-том/кпетками
о Околобронхиальное воспаление
о Этиология:
- Микобактериальная инфекция
- Бронхопневмония
- Инфекционный бронхиолит

в) Низкая плотность в центролобулярной области: центролобулярная эмфизема:
• КТ:
о Центролобулярные очаги (3-10 мм) низкой плотности
о Низкая плотность расположенной вблизи центролобулярной артерии
о Невыраженная стенка
• Наблюдается при заболеваниях:
о Центролобулярная (проксимальная ацинарная, центроацинарная) эмфизема:
- С вовлечением проксимального отдела ацинуса
- Растяжение и разрушение респираторных бронхиол
- Увеличенное воздушное пространство в центральном ацинусе с относительно нормальным дистальным отделом ацинуса
о Сильнее поражаются верхние доли и верхний сегмент нижних долей

г) Низкая плотность доли легкого: панлобулярная эмфизема:
• КТ:
о Диффузная широкая область низкой плотности
о Сниженный размер легочных сосудов
• Возникает при заболеваниях:
о Панлобулярная (панацинарная) эмфизема:
- Поражается весь ацинус и все ацинусы во вторичной легочной дольке
- Диффузное или с преимущественным поражением нижних долей
- Ассоциировано с недостаточностью α-1-антитрипсина

д) Низкая плотность доли легкого: парасептальная эмфизема:
• КТ:
о Кистозные области вблизи междолевых перегородок и плевры, крупных сосудов и бронхов
о Часто сочетается с центролобулярной эмфиземой
• Наблюдается при заболеваниях:
о Поражение периферических отделов легочного ацинуса и субплевральных вторичных легочных долек
о Расширенные альвеолярных ходы
о Преимущественно поражение верхней доли
о Ассоциировано с буллезной болезнью

е) Низкая плотность доли легкого: констриктивный бронхиолит:
• КТ:
о Мозаичная плотность, мозаичная перфузия
о Неоднородное распределение
о Воздушные ловушки на КТ при выдохе
• Возникает при заболеваниях:
о Концентричное сужение мембранозной части бронхиол за счет фиброза с нарушением тока воздуха в легких:
- Воздушные ловушки
- Мозаичная плотность/перфузия

ж) Ацинарные узелки: инфекция:
• КТ:
о Узелковые дымчатые тени от 6 до 10 мм
• Возникает при заболеваниях:
о Воспаление терминальных и респираторных бронхиол
о Щажение дистальных воздушных пространств
о Диссеминация инфекции по дыхательным путям:
- Туберкулез
- Ветряночная пневмония на ранних стадиях

Респираторный отдел легких. Строение респираторного отдела легких.

Структурно-функциональной единицей респираторного отдела легких является ацинус. Этим термином обозначают систему, состоящую из респираторных бронхиол 1-3-го порядков, альвеолярных ходов и альвеолярных мешочков. Между воздухом внутри альвеол и кровью, находящейся в капиллярах, оплетающих альвеолярную стенку, происходит газообмен.

Ацинус начинается респираторной бронхиолой 1-го порядка, которая в свою очередь дихотомически делится на респираторные бронхиолы 2-го, а затем 3-го порядков. Последние разветвляются на альвеолярные ходы, заканчивающиеся двумя-тремя сферическими альвеолярными мешочками. Численность альвеол последовательно возрастает и, если в стенках репираторных бронхиол еще имеются участки, состоящие из однослойного кубического эпителия и тонкой прослойки коллагеновых волокон и гладких миоцитов, где не происходит газообмен, то альвеолярные мешочки имеют стенку, сплошь состоящую из альвеол. По форме ацинус напоминает пирамиду или конус, в вершину, которого входит респираторная бронхиола. 12-18 ацинусов образуют легочную дольку. Ацинусы отделены друг от друга соединительнотканными прослойками.

Важнейшим структурным элементом легочного ацинуса является альвеола. Средний диаметр альвеол у взрослого человека 260-290 мкм. Альвеолы тесно прилежат друг к другу. Между ними определяются тонкие межальвеолярные перегородки, по которым проходят кровеносные капилляры. Имеются также эластические и ретикулярные волокна, оплетающие альвеолы, и придающие им упругость. В перегородках между альвеолами обнаруживаются отверстия диаметром 10-15 мкм. Это так называемые альвеолярные поры Кона, создающие возможность проникновения воздуха из одной альвеолы в другую. Эластический каркас и гладкие мышечные клетки в легочных ацинусах участвуют в регуляции поступления воздуха в альвеолы.

респираторный отдел легких

Изнутри альвеолы выстланы однослойным плоским эпителием. Альвеолярная выстилка включает несколько клеточных дифферонов. Респираторные плоские эпителиоциты (альвеолоциты 1-го типа) — это полигональной формы клетки. В них различают две части: более толстую ядросодержащую и тонкую безъядерную (пластинчатую). Околоядерная часть имеет толщину около 5 мкм. Толщина пластинчатой части не более 0,2 мкм. Органеллы располагаются около ядра. Через пластинчатую часть цитоплазмы происходит газообмен, и в ней много пиноцитозных пузырьков. Респираторные эпителиоциты лежат на тонкой базальной мембране. Своей пластинчатой частью они прилежат к базальным участкам эндотелиальных клеток кровеносных капилляров. В этих участках базальные мембраны альвеолярного эпителия и эндотелия могут сливаться, благодаря чему аэрогематический барьер (барьер "воздух-кровь") оказывается чрезвычайно тонким (около 0,5 мкм). Это благоприятствует газообмену. Обмен газов между альвеолярным воздухом и кровью происходит путем диффузии в связи с разницей парциального давления О2 и СО2 в альвеолярном воздухе и в крови. Респираторные эпителиоциты являются высокоспециализированными клетками, утратившими способность делиться митозом.

Аэрогематическим барьером называется комплекс элементов стенки альвеолы и кровеносного капилляра, который преодолевают газы (О2и СО2 в процессе внешнего дыхания. В его состав входят слой сурфактанта, цитоплазматические пластинчатые части респираторных эпителиоцитов, общая с эндотелиоцитами базальная мембрана, аблюминальная и люминальная поверхности эндотелиоцитов гемокапилляра, стенка эритроцита (если слияния базальных мембран нет, то структура барьера усложняется — между двумя базальными мембранами располагается тонкая соединительнотканная прослойка).

Большие эпителиоциты являются одновременно секретирующими и пролиферирующими клетками. Между респираторными и большими эпителиоцитами образуются межклеточные соединения типа плотных контактов. Кроме описанных выше клеток, в стенке альвеол и в гипофазе обнаруживаются альвеолярные макрофагоциты. Это производные моноцитов. Очищая вдыхаемый воздух, альвеолярные макрофаги выполняют функцию защиты.

Иннервация легких. К бронхиальному дереву подходят симпатические и парасимпатические нервы. Нервные импульсы, идущие по парасимпатическим нервным проводникам (ветви блуждающего нерва), вызывают сокращение гладких мышц бронхов, а раздражение симпатических волокон, напротив, вызывает расслабление мышц.

Возрастные изменения. В постнатальном периоде прогрессирующе увеличивается дыхательная поверхность легких. В пожилом возрасте происходит снижение газообменной функции в связи с постепенным разрастанием соединительнотканной стромы легких.

Регенерация легких связана в основном с явлениями компенсаторной гипертрофии клеток альвеолярной выстилки. Показано, что большие эпителиоциты 2-го типа могут делиться митозом. Регенерация легких связана также с пролиферацией и миграцией клеток бронхиального эпителия, который врастает в зону повреждения и участвует в формировании альвеолоподобных структур.

- Вернуться в оглавление раздела "гистология"

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Fact-checked

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

С уменьшением калибра бронхов стенки их становятся тоньше, снижаются высота и количество рядов клеток эпителия. Бесхрящевые (или мембранозные) бронхиолы имеют диаметр 1-3 мм, в эпителии отсутствуют бокаловидные клетки, их роль выполняют клетки Клара, а подслизистый слой без четкой границы переходит в адвентицию. Мембранозные бронхиолы переходят в терминальные диаметром около 0,7 мм, их эпителий однорядный. От терминальных бронхиол отходят респираторные бронхиолы, имеющие диаметр 0,6 мм. Респираторные бронхиолы через поры связаны с альвеолами. Терминальные бронхиолы являются воздухо-проводящими, респираторные - принимают участие в проведении воздуха и газообмене.

Общая площадь сечения терминального отдела респираторного тракта во много раз превышает площадь сечения трахеи и крупных бронхов (53-186 см 2 против 7-14 см 2 ), однако на долю бронхиол приходится только 20% сопротивления воздухопотоку. В связи с малым сопротивлением терминальных отделов респираторного тракта на ранних этапах поражение бронхиол может протекать бессимптомно, не сопровождаться изменениями функциональных тестов и являться случайной находкой при компьютерной томографии с высоким разрешением.

Бронхи. Респиратроный отдел бронхов

Согласно Международной гистологической классификации, совокупность разветвлений терминальной бронхиолы называют первичной легочной долькой, или ацинусом. Это самая многочисленная структура легкого, в которой происходит газообмен. В каждом легком насчитывается по 150 000 ацинусов. Ацинус взрослого диаметром 7-8 мм, имеет одну или несколько респираторных бронхиол. Вторичная легочная долька - наименьшая единица легкого, ограниченная перегородками соединительной ткани. Вторичные легочные дольки состоят из 3 - 24 ацинусов. Центральная часть содержит легочную бронхиолу и артерию. Их обозначают дольковым ядром или «центрилобулярной структурой». Вторичные легочные дольки разделены междольковыми перегородками, содержащими вены и лимфатические сосуды, артериальные и бронхиолярные ответвления в дольковом ядре. Вторичная легочная долька обычно полигональной формы с длиной каждой из составляющих сторон 1-2,5 см.

Соединительнотканный каркас дольки состоит из междольковых перегородок, внутридолькового, центрилобулярного, перибронховаскулярного, субплеврального интерстиция.

Бронхи. Респиратроный отдел бронхов

Терминальная бронхиола делится на 14-16 респираторных бронхиол I порядка, каждая из которых в свою очередь дихотомически делится на респираторные бронхиолы II порядка, а они дихотомически делятся на респираторные бронхиолы III порядка. Каждая респираторная бронхиола III порядка подразделяется на альвеолярные ходы (диаметром 100 мкм). Каждый альвеолярный ход заканчивается двумя альвеолярными мешочками.

Альвеолярные ходы и мешочки в своих стенках имеют выпячивания (пузырьки) - альвеолы. На один альвеолярный ход приходится примерно 20 альвеол. Общее количество альвеол достигает 600-700 млн общей площадью около 40 м 2 при выдохе и 120 м 2 - при вдохе.

В эпителии респираторных бронхиол прогрессивно убывает количество реснитчатых и увеличивается количество нереснитчатых кубических клеток и клеток Клара. Альвеолярные ходы выстланы плоским эпителием.

Большой вклад в современное представление о строении альвеолы внесли электронно-микроскопические исследования. На большом протяжении стенки являются общими для двух смежных альвеол. П р и этом альвеолярный эпителий покрывает стенку с двух сторон. Между двумя листками эпителиальной выстилки находится интерстиций, в котором различают септальное пространство и сеть кровеносных капилляров. В септальном пространстве имеются пучки тонких коллагнновых волокон, ретикулиновые и эластические волокна, немногочисленные фибробласты и свободные клетки (гистиоциты, лимфоциты, нейтрофильные лейкоциты). Как эпителий, так и эндотелий капилляров лежат на базальной мембране толщиной 0,05-0,1 мкм. Местами субэпителиальная и субэндотелиальная мембраны разделены септальным пространством, местами соприкасаются, образуя единую альвеолярно-капиллярную мембрану. Таким образом, альвеолярный эпителий, альвеолярно-капиллярная мембрана и слой эндотелиальных клеток являются компонентами аэрогематического барьера, через который осуществляется газообмен.

Альвеолярный эпителий неоднороден; в нем различают клетки трех типов. Альвеолоциты (пневмоциты) I типа покрывают большую часть поверхности альвеол. Через них осуществляется газообмен.

Альвеолоциты (пневмоциты) II типа, или большие альвеолоциты, имеют округлую форму и выступают в просвет альвеол. На их поверхности находятся микроворсинки. В цитоплазме содержатся многочисленные митохондрии, хорошо развитый гранулярный эндоплазматический ретикулум и другие органеллы, из которых наиболее характерны окруженные мембраной осмиофильные пластинчатые тельца. Они состоят из электронно-плотного слоистого вещества, содержащего фосфолипиды, а также белковые и углеводные компоненты. Подобно секреторным гранулам пластинчатые тельца выделяются из клетки, образуя тонкую (около 0,05 мкм) пленку сурфактанта, которая снижает поверхностное натяжение, предотвращая спадение альвеол.

Альвеолоциты III типа, описанные под названием щеточных клеток, отличаются наличием коротких микроворсинок на апикальной поверхности, многочисленных везикул в цитоплазме и пучков микрофибрилл. Считают, что они осуществляют всасывание жидкости и концентрацию сурфактанта либо хеморецепцию. Романова Л.К. (1984) высказала предположение об их нейросекреторной функции.

В просвете альвеол в норме встречаются немногочисленные макрофаги, поглощающие пылевые и другие частицы. В настоящее время можно считать установленным происхождение альвеолярных макрофагов из моноцитов крови и тканевых гистиоцитов.

Сокращение гладкой мускулатуры приводит к уменьшению основания альвеол, изменению конфигурации пузырьков - они при этом удлиняются. Именно такие изменения, а не разрывы перегородок лежат в основе вздутия и эмфиземы.

Конфигурация альвеол определяется эластичностью их стенок, растягивающихся за счет увеличения объема грудной клетки, и активным сокращением гладкой мускулатуры бронхиолы. Поэтому при одном и том же объеме дыхания возможно различное растяжение альвеолы в разных сегментах. Третьим фактором, определяющим конфигурацию и стабильность альвеол, является сила поверхностного натяжения, образующаяся на границе двух сред: воздуха, наполняющего альвеолу, и жидкостной пленки, выстилающей ее внутреннюю поверхность и предохраняющей эпителий от высыхания.

Для противодействия силе поверхностного натяжения (Т), стремящейся к сжатию альвеолы, необходимо определенное давление (Р). Величина Р обратно пропорциональна радиусу кривизны поверхности, что вытекает из уравнения Лапласа: Р = T / R. Из этого следует, что чем меньше радиус кривизны поверхности, тем более высокое давление необходимо для поддержания данного объема альвеол (при постоянном Т). Однако расчеты показали, что оно должно было бы превышать во много раз внутриальвеолярное давление, существующее в действительности. При выдохе, например, альвеолы должны были бы спадаться, чего не происходит, так как стабильность альвеол при низких объемах обеспечивается поверхностно-активным веществом - сурфактантом, снижающим поверхностное натяжение пленки при уменьшении площади альвеол. Это так называемый антиателектатический фактор, обнаруженный в 1955 г. Pattle и состоящий из комплекса веществ белково-углеводно-липидной природы, в состав которого входит много лецитина и других фосфолипидов. Сурфактант вырабатывается в респираторном отделе альвеолярными клетками, которые вместе с клетками поверхностного эпителия выстилают альвеолы изнутри. Альвеолярные клетки богаты органоидами, протоплазма их содержит крупные митохондрии, поэтому они отличаются высокой активностью окислительных ферментов, содержат также неспецифическую эстеразу, щелочную фосфатазу, липазу. Наибольший интерес представляют постоянно встречающиеся в этих клетках включения, определяемые при электронной микроскопии. Это осмиофильные тельца овальной формы, 2-10 мк в диаметре, слоистого строения, ограниченные одинарной мембраной.

trusted-source

[1], [2], [3], [4], [5], [6]

Fact-checked

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

Правый главный бронх является как бы продолжением трахеи. Длина его от 28 до 32 мм, диаметр просвета 12-16 мм. Левый главный бронх длиной 40-50 мм имеет ширину от 1 0 до 1 3 мм.

По направлению к периферии главные бронхи дихотомически делятся на долевые, сегментарные, субсегментарные и далее вплоть до терминальных и респираторных бронхиол. Однако встречается и разделение на 3 ветви (трифуркация) и более.

Правый главный бронх делится на верхнедолевой и промежуточный, а промежуточный - на среднедолевой и нижнедолевой. Левый главный бронх делится на верхнедолевой и нижнедолевой. Общее количество генераций дыхательных путей вариабельно. Начиная от главного бронха и кончая альвеолярными мешками максимальное число генераций достигает 23 - 26.

Бронхи

Главные бронхи - это бронхи первого порядка, долевые бронхи - второго, сегментарные бронхи - третьего порядка и т. д.

Бронхи с 4-й по 13-ю генерацию имеют диаметр около 2 мм, общее число таких бронхов 400. В терминальных бронхиолах диаметр колеблется от 0,5 до 0,6 мм. Длина воздухопроводящих путей от гортани до ацинусов составляет 23-38 см.

Бронхи

Правый и левый главные бронхи (bronchi principles dexter et sinister) начинаются от бифуркации трахеи на уровне верхнего края V грудного позвонка и направляются к воротам соответственно правого и левого легких. В области ворот легких каждый главный бронх делится на долевые (бронхи второго порядка). Над левым главным бронхом располагается дуга аорты, над правым - непарная вена. Правый главный бронх имеет более вертикальное положение и меньшую длину (около 3 см), чем левый главный бронх (4-5 см в длину). Правый главный бронх шире (диаметр 1,6 см), чем левый (1,3 см). Стенки главных бронхов имеют такое же строение, как и стенки трахеи. Изнутри стенки главных бронхов выстланы слизистой оболочкой, снаружи покрыты адвентицией. Основой стенок являются не замкнутые сзади хрящи. В составе правого главного бронха насчитывается 6-8 хрящевых полуколец, у левого - 9-12 хрящей.

Иннервация трахеи и главных бронхов: ветви правого и левого возвратных гортанных нервов и симпатических стволов.

Кровоснабжение: ветви нижней щитовидной, внутренней грудной артерии, грудной части аорты. Венозный отток осуществляется в плечеголовные вены.

Бронхи

Бронхи

Отток лимфы: в глубокие шейные латеральные (внутренние яремные) лимфатические узлы, пред- и паратрахеальные, верхние и нижние трахеобронхиальные лимфатические узлы.

trusted-source

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

Гистологическое строение бронхов

Снаружи трахея и крупные бронхи покрыты рыхлым соединительнотканным футляром - адвентицией. Наружная оболочка (адвентиция) состоит из рыхлой соединительной гкани, содержащей в крупных бронхах жировые клетки. В ней проходят кровеносные лимфатические сосуды и нервы. Адвентиция нечетко отграничена от перибронхиальной соединительной ткани и вместе с последней обеспечивает возможность некоторого смещения бронхов по отношению к окружающим частям легких.

Далее по направлению внутрь идут фиброзно-хрящевой и частично мышечный слои, подслизистый слой и слизистая оболочка. В фиброзном слое кроме хрящевых полуколец имеется сеть эластических волокон. Фиброзно-хрящевая оболочка трахеи при помощи рыхлой соединительной ткани соединяется с соседними органами.

Передняя и боковые стенки трахеи и крупных бронхов образованы хрящами и расположенными между ними кольцевидными связками. Хрящевой скелет главных бронхов состоит из полуколец гиалинового хряща, которые по мере уменьшения диаметра бронхов уменьшаются в размерах и приобретают характер эластического хряща. Таким образом, из гиалинового хряща состоят только крупные и средние бронхи. Хрящи занимают 2/3 окружности, мембранозная часть - 1/3. Они образуют фиброзно-хрящевой остов, который обеспечивает сохранение просвета трахеи и бронхов.

Мышечные пучки сосредоточены в мембранозной части трахеи и главных бронхов. Различают поверхностный, или наружный, слой, состоящий из редких продольных волокон, и глубокий, или внутренний, представляющий собой сплошную тонкую оболочку, сформированную поперечными волокнами. Мышечные волокна располагаются не только между концами хряща, но и заходят в межкольцевые промежутки хрящевой части трахеи и в большей степени главных бронхов. Таким образом, в трахее пучки гладких мышц с поперечным и косым расположением находятся только в мембранозной части, т. е. мышечный слой как таковой отсутствует. В главных бронхах редкие группы гладких мышц имеются по всей окружности.

С уменьшением диаметра бронхов мышечный слой становится сильнее развитым, а волокна его идут в несколько косом направлении. Сокращение мышц вызывает не только с у -жение просвета бронхов, но и некоторое укорочение их, благодаря чему бронхи участвуют в выдохе за счет сокращения емкости дыхательных путей. Сокращение мышц позволяет сузить просвет бронхов на 1/4. При вдохе бронх удлиняется и расширяется. Мышцы достигают респираторных бронхиол 2-го порядка.

Кнутри от мышечного слоя находится подслизистый слой, состоящий из рыхлой соединительной ткани. В нем располагаются сосудистые и нервные образования, подслизистая лимфатическая сеть, лимфоидная ткань и значительная часть бронхиальных желез, которые относятся к трубчато-ацинозному типу со смешанной слизисто-серозной секрецией. Они состоят из концевых отделов и выводных протоков, которые открываются колбовидными расширениями на поверхности слизистой оболочки. Сравнительно большая длина протоков способствует длительному течению бронхитов при воспалительных процессах в железах. Атрофия желез может привести к высыханию слизистой оболочки и воспалительным изменениям.

Наибольшее число крупных желез имеется над бифуркацией трахеи и в области деления главных бронхов на долевые бронхи. У здорового человека в сутки выделяется до 100 мл секрета. На 95% он состоит из воды, а на 5% приходится равное количество белков, солей, липидов и неорганических веществ. В секрете преобладают муцины (высокомолекулярные гликопротеины). К настоящему времени насчитывается 14 видов гликопротеинов, 8 из которых содержатся в респираторной системе.

Слизистая оболочка бронхов

Слизистая оболочка состоит из покровного эпителия, базальной мембраны, собственной пластинки слизистой оболочки и мышечной пластинки слизистой оболочки.

Бронхиальный эпителий содержит высокие и низкие базальные клетки, каждая из которых прикреплена к базальной мембране. Толщина базальной мембраны колеблется от 3,7 до 10,6 мкм. Эпителий трахеи и крупных бронхов многорядный, цилиндрический, мерцательный. Толщина эпителия на уровне сегментарных бронхов составляет от 37 до 47 мкм. В его составе различают 4 основных типа клбток: реснитчатые, бокаловидные, промежуточные и базальные. Кроме того, встречаются серозные, щеточные, клетки Клара и Кульчицкого.

Реснитчатые клетки преобладают на свободной поверхности эпителиального пласта (Романова Л.К., 1984). Они имеют неправильную призматическую форму и овальное пузырьковидное ядро, расположенное в средней части клетки. Электроннооптическая плотность цитоплазмы невелика. Митохондрий немного, эндоплазматический гранулярный ретикулум развит слабо. Каждая клетка несет на своей поверхности короткие микроворсинки и около 200 мерцательных ресничек толщиной 0,3 мкм и длиной около 6 мкм. У человека плотность расположения ресничек составляет 6 мкм 2 .

Между соседними клетками образуются пространства; между собой клетки соединяются с помощью пальцеобразных выростов цитоплазмы и десмосом.

Популяция реснитчатых клеток по степени дифференцировки их апикальной поверхности подразделяется на следующие группы:

  1. Клетки, находящиеся в фазе формирования базальных телец и аксонем. Реснички в это время на апикальной поверхности отсутствуют. В этот период происходит накопление центриолей, которые перемещаются к апикальной поверхности клеток, и формирование базальных телец, из которых начинают образовываться аксонемы ресничек.
  2. Клетки, находящиеся в фазе умеренно выраженного цилиогенеза и роста ресничек. На апикальной поверхности таких клеток появляется небольшое количество ресничек, длина которых составляет 1/2-2/3 от длины ресничек дифференцированных клеток. В этой фазе на апикальной поверхности преобладают микроворсинки.
  3. Клетки, находящиеся в фазе активного цилиогенеза и роста ресничек. Апикальная по-верхность таких клеток уже почти целиком покрыта ресничками, размеры которых соответствуют размерам ресничек клеток, находящихся в предшествующей фазе цилиогенеза.
  4. Клетки, находящиеся в фазе завершенного цилиогенеза и роста ресничек. Апикальная поверхность таких клеток целиком покрыта густо расположенными длинными ресничками. На электронограммах видно, что реснички рядом расположенных клеток ориентированы в одном направлении и изогнуты. Это является выражением мукоцилиарного транспорта.

Все эти группы клеток хорошо различимы на фотографиях, полученных с помощью световой электронной микроскопии (СЭМ).

Реснички прикреплены к базальным тельцам, находящимся в апикальной части клетки. Аксонема реснички образована микротрубочками, из которых 9 пар (дуплеты) расположены по периферии, а 2 единичных (синглеты) - в центре. Дуплеты и синглеты соединены некси-новыми фибриллами. На каждом из дуплетов с одной стороны имеются 2 короткие «ручки», в которых содержится АТФ-аза, участвующая в освобождении энергии АТФ. Благодаря такой структуре реснички ритмично колеблются с частотой 16-17 в направлении носоглотки.

Они перемещают слизистую пленку, покрывающую эпителий, со скоростью около 6 мм/мин, обеспечивая тем самым непрерывную дренажную функцию бронха.

Реснитчатые эпителиоциты, по мнению большинства исследователей, находятся на стадии конечной дифференцировки и не способны к делению митозом. Согласно современной концепции, базальные клетки являются предшественниками промежуточных клеток, которые могут дифференцироваться в реснитчатые клетки.

Бокаловидные клетки, как и реснитчатые, достигают свободной поверхности эпителиального пласта. В мембранозной части трахеи и крупных бронхов на долю реснитчатых клеток приходится до 70-80%, а на долю бокаловидных - не более 20-30%. В тех местах, где по периметру трахеи и бронхов имеются хрящевые полукольца, обнаруживаются зоны с разным соотношением реснитчатых и бокаловидных клеток:

  1. с преобладанием реснитчатых клеток;
  2. с почти равным соотношением реснитчатых и секреторных клеток;
  3. с преобладанием секреторных клеток;
  4. с полным или почти полным отсутствием реснитчатых клеток («безреснитчатые»).

Бокаловидные клетки являются одноклеточными железами мерокринового типа, выделяющими слизистый секрет. Форма клетки и расположение ядра зависят от фазы секреции и заполнения надъядерной части гранулами слизи, которые сливаются в более крупные гранулы и характеризуются малой электронной плотностью. Бокаловидные клетки имеют удлиненную форму, которая во время накопления секрета принимает вид бокала с основанием, расположенным на базальной мембране и интимно связанным с ней. Широкий конец клетки куполообразно выступает на свободной поверхности и снабжен микроворсинками. Цитоплазма электронноплотная, ядро округлое, эндоплазматическая сеть шероховатого типа, хорошо развита.

Бокаловидные клетки распределены неравномерно. При сканирующей электронной микроскопии было выявлено, что различные зоны эпителиального пласта содержат неоднородные участки, состоящие либо только из реснитчатых эпителиоцитов, либо только из секреторных клеток. Однако сплошные скопления бокаловидных клеток сравнительно немногочисленны. По периметру на срезе сегментарного бронха здорового человека имеются участки, где соотношение реснитчатых эпителиоцитов и бокаловидных клеток составляет 4:1-7:1, а в других областях это соотношение равно 1:1.

Число бокаловидных клеток уменьшается в бронхах дистально. В бронхиолах бокаловидные клетки замещаются клетками Клара, участвующими в выработке серозных компонентов слизи и альвеолярной гипофазы.

В мелких бронхах и бронхиолах бокаловидные клетки в норме отсутствуют, но могут появляться при патологии.

В 1986 г. чешские ученые изучали реакцию эпителия воздухоносных путей кроликов на пероральное введение различных муколитических веществ. Оказалось, что клетками-мишенями действия муколитиков служат бокаловидные клетки. После выведения слизи бокаловидные клетки, как правило, дегенерируют и постепенно удаляются из эпителия. Степень повреждения бокаловидных клеток зависит от введенного вещества: наибольший раздражающий эффект дает ласольван. После введения бронхолизина и бромгексина происходит массивная дифференцировка новых бокаловидных клеток в эпителии воздухоносных путей, следствием чего является гиперплазия бокаловидных клеток.

Базальные и промежуточные клетки расположены в глубине эпителиального пласта и не достигают свободной поверхности. Это наименее дифференцированные клеточные формы, за счет которых в основном осуществляется физиологическая регенерация. Форма промежуточных клеток удлиненная, базальных - неправильно-кубическая. У тех и других - округлое, богатое ДНК ядро и небольшое количество цитоплазмы, имеющей большую плотность в базальных клетках.

Базальные клетки способны давать начало как реснитчатым, так и бокаловидным клеткам.

Секреторные и реснитчатые клетки объединяются под названием «мукоцилиарный аппарат».

Процесс передвижения слизи в воздухоносных путях легких называется мукоцилиарным клиренсом. Функциональная эффективность МЦК зависит от частоты и синхронности движения ресничек мерцательного эпителия, а также, что очень важно, от характеристики и реологических свойств слизи, т. е. от нормальной секреторной способности бокаловидных клеток.

Серозные клетки немногочисленны, достигают свободной поверхности эпителия и отличаются мелкими электронноплотными гранулами белкового секрета. Цитоплазма также электронноплотная. Хорошо развиты митохондрии и шероховатый ретикулум. Ядро округлое, обычно находится в средней части клетки.

Секреторные клетки, или клетки Клара, наиболее многочисленны в мелких бронхах и бронхиолах. Они, как и серозные, содержат мелкие электронноплотные гранулы, но отличаются малой электронной плотностью цитоплазмы и преобладанием гладкого, эндоплаз-матического ретикулума. Округлое ядро находится в средней части клетки. Клетки Клара участвуют в образовании фосфолипидов и, возможно, в выработке сурфактанта. В условиях повышенного раздражения они, по-видимому, могут превращаться в бокаловидные клетки.

Щеточные клетки несут на свободной поверхности микроворсинки, но лишены ресничек. Цитоплазма их малой электронной плотности, ядро овальное, пузырьковидное. В руководстве Хэма А. и Кормака Д. (1982) они рассматриваются как бокаловидные клетки, выделившие свой секрет. Им приписывается множество функций: абсорбционная, сократительная, секреторная, хеморецепторная. Однако в воздухоносных путях человека они практически не исследованы.

Клетки Кульчицкого встречаются на всем протяжении бронхиального дерева в основании эпителиального пласта, отличаясь от базальных малой электронной плотностью цитоплазмы и наличием мелких гранул, которые выявляются под электронным микроскопом и под световым при импрегнации серебром. Их относят к нейросекреторным клеткам APUD - системы.

Под эпителием находится базальная мембрана, которая состоит из коллагеновых и неколлагеновых гликопротеидов; она обеспечивает поддержку и прикрепление эпителия, участвует в метаболизме и иммунологических реакциях. Состояние базальной мембраны и подлежащей соединительной ткани обусловливает структуру и функцию эпителия. Собственной пластинкой называют слой рыхлой соединительной ткани между базальной мембраной и мышечным слоем. В ней находятся фибробласты, коллагеновые и эластические волокна. В собственной пластинке имеются кровеносные и лимфатические сосуды. Капилляры достигают базальной мембраны, но не проникают в нее.

В слизистой оболочке трахеи и бронхов, преимущественно в собственной пластинке и возле желез, в подслизистой постоянно присутствуют свободные клетки, которые могут проникать через эпителий в просвет. Среди них преобладают лимфоциты, реже встречаются плазматические клетки, гистиоциты, тучные клетки (лаброциты), нейтрофильные и эозинофильные лейкоциты. Постоянное нахождение лимфоидных клеток в слизистой оболочке бронхов обозначается специальным термином «бронхоассоциированная лимфоидная ткань» (БАЛТ) и рассматривается в качестве иммунологической защитной реакции на антигены, проникающие с воздухом в дыхательные пути.

trusted-source

[11], [12], [13], [14], [15], [16], [17]

Читайте также: