Почему при сварке алюминия появляются поры полуватоматической сварки

Обновлено: 28.04.2024

Сварка полуавтоматом существенно упростила процесс создания качественных швов. Источник питания автоматически подстраивается под условия сварки, что позволяет выполнять сложные работы сварщику с низкой квалификацией. С одной стороны, это хорошо, с другой, если сварщик попадает в неприятную ситуацию, из-за недостатка опыта ему трудно установить причины дефектов, выявить свои ошибки.
Рассмотрим одну из распространенных проблем, такую как пористость шва, раковины в сварном шве. Почему они образуются? Как с ними бороться?
Первая причина: грязь, масло, коррозия и прочие технологические загрязнения.
Сварка MIG/MAG более чувствительна к загрязнениям, чем та же сварка покрытым электродом. Оказывается, при сварке покрытым электродом составляющие шлака помогают очистить поверхность металла. При сварке MIG/MAG такого процесса не происходит.
Решение проблемы: используйте проволоку содержащую раскислители: кремний, марганец. Подойдет проволока OK Autrod 12.51 ESAB. Так же поможет очистка поверхности шлифмашинкой и обезжиривание в бензине.
Вторая причина: недостаточная газовая защита
Решение проблемы: Расход защитного газа зависит от таких параметров сварки как сила тока, диаметр проволоки и скорость ветра, если сварочные работы проводятся вне помещения. Как правило, расход составляет около 1 кубического метра в час. Убедитесь, что газ подается в достаточном количестве.
При работе на сильном ветре устанавливайте защитные экраны. При ветре более 8 км/час сварка MIG/MAG не рекомендуется.
Пористость также может возникать при избыточном давлении газа, а также в результате неисправности элементов горелки, при скоплении в ней сварочных брызг, повреждении кабеля или плохом закреплении кабельных соединений.
Третья причина: основной металл имеет повышенное содержание вредных примесей, таких как сера и фосфор.
Решение проблемы: к сожалению, решить эту проблему можно только подбором другого основного металла. Или используйте другие методы сварки, которые способствуют процессу выведения шлака из металла.


Читайте на сайте статью:
Cварка полуавтоматом для начинающих

Добрый день форумчане! Есть вопрос. При сварке двух толстостенных пластин 09Г2С толщиной 20мм, на полуавтомате Blu-Pak 45 (в смеси Ar - 98% + O2 - 2%), сварочной проволокой Св 08Г2С от ESAB (пробовал и Weld G3Si1) весь стык при просвете в порах! Сварка производилась на трёх разных постах и тремя разными сварщиками ( помимо меня), так что неисправность оборудования как и низкую квалификацию сварщиков - исключаю. Есть мысли о замене смеси на Ar-80%+СО2-20%. Есть какие нибудь мысли - по причине пор?

oleinik,98/2 - это для нержи хорошо. Да ещё и кислород(!) в составе.
80/20, 82/18 - самое то.

Ну, и всё остальное - подготовка кромок, зачистка. Сквозняки, сдувающие газовую защиту.
А, прочитал внимательнее. Смесь аргона и кислорода что-ли?!

смесь 80/20 вам будет за глаза и по цене ниже,насчет пор смотрите качество самого газа и целостность подводящих рукавов,естественно качественная подготовка стыка только приветствуется.Проверьте еще работу редуктора и плотность подсоединения.

oleinik,98/2 - это для нержи хорошо. Да ещё и кислород(!) в составе.
80/20, 82/18 - самое то.

Ну, и всё остальное - подготовка кромок, зачистка. Сквозняки, сдувающие газовую защиту.
А, прочитал внимательнее. Смесь аргона и кислорода что-ли?!

Да именно с кислородом. Именно эту смесь применяют на предприятии. Посмотрев в на без крайних просторах интернета информацию о ней я нашел следующее;

Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.

но в моем случае 09Г2С- низколегированная. Поэтому хочу предложить начальству заменить на

Смесь аргона и углекислого газа. Рациональное соотношение - 75-80% аргона и 20-25% углекислого газа. При этом обеспечиваются минимальное разбрызгивание, качественное формирование шва, увеличение производительности, хорошие свойства сварного соединения. Используется при сварке низкоуглеродистых и низколегированных конструкционных сталей.

под нерж 98\2 (аргон\углекислота)

под чернягу 80\20, она же 82\18

применение кислорода может и хорошо, но нет данных. На предприятиях такого не встречал. Все программы в синергетиках только под 80\20 либо под чистую углекислоту. Ни каких кислородах речи не ведется.

В вашем описании нет ни фото ни сравнительного анализа. Только бла бла. Поэтому поры может как раз и лезут из-за наличия кислорода в защитном газе.

Ну а если в общем то:

- удалить масло с поверхности

- удалить ржу с поверхности

- проверить все соединения магистрали подвода газа.

как вариант, взять баллон не смеси с кислородом, а чистого аргона, если есть на предприятии. Если все встанет на свои места, то явно кислород является лишним.

P.S. уж очень много безграмотных появилось. Из дают задачу сделать сайт. они его делают и заполняют тем что дали. Следовательно дали с ошибками и еще при заполнении делают ошибки. Поэтому всему что написано верить просто опасно!

зарабатываем и получаем удовольствие от процесса.

Удовольствие от высокого качества длится дольше чем радость от

Вот совсем недавно стрелу ремонтил 09Г2С , газ Ar82% x Co18% не каких пор. И первое что хочется сказать подготовка , окалину долой , ржу тоже и все должно блестеть , проволока тоже не каких "паучков" ржи не должна иметь. Отрегулируйте оптимальный расход .

Ну и по поводу вашей смеси , да в основном она для нержи , но вот из очень хороших книг (таких сейчас не пишут) СССР применяли и очень даже успешно , но в те времена наука была сильна и все обосновывалось.

P1090330.JPG
P1090331.JPG

P1090332.JPG
P1090333.JPG

P1090334.JPG
P1090335.JPG

P1090336.JPG
P1090337.JPG

P1090338.JPG
P1090339.JPG

P1090340.JPG
P1090341.JPG

P1090342.JPG
P1090343.JPG

P1090344.JPG
P1090345.JPG

P1090346.JPG
P1090347.JPG

P1090348.JPG
P1090349.JPG

P1090350.JPG
P1090351.JPG

P1090352.JPG
P1090353.JPG

P1090354.JPG
P1090355.JPG

P1090356.JPG
P1090357.JPG

P1090358.JPG
P1090359.JPG

P1090360.JPG

P.S. Просьба к модераторам (если сие возможно) повесить вот эту брошюрку по газам где нить на виду , а то уже пятый раз наверное выкладываю и со временем теряется в недрах форума. Думаю что многим нужна и будут пользоваться.

oleinik, углекислота является активным защитным газом, и участвует в химических процессах проходящих в сварочной ванне. В смеси с 2 процентами углекислоты просто не хватает, вот и всё.

Всегда надо смотреть в какой смеси варит ваша проволока, и Выполнять то что написал там производитель. Вбейте в гугл 08Г2С и всё увидите.

Цитирую : 82% Ar и 18%СО2. Здесь достигается хорошая глубина провара, особенно, если сталкиваться приходится с толстолистовым материалом. Позволяет избежать дефектов в шве. Достаточно высокое содержание СО2 делает возможным более продуктивную сварку стали, запачканной маслом, влагой, коррозией, снижая таким образом себестоимость изготовления. Самая популярная смесь, применяемая при сварке полуавтоматом. В сравнении с чистым СО2 позволяет увеличить скорость до 10% и достичь экономии сварочной проволоки до 15%.

Есть еще такие смеси:

  • 92% Ar, 8% СО2 для работы в режиме струйного переноса
  • 93% Ar, 5% СО2, 2% O2 для тонких сталей
  • 86% Ar, 12% СО2, 2% О2 -высокая производительность в большом диапазоне токов

Теория это хорошо и на многих сайтах так написано. Но что в живую? И как кислород себя ведет? Не появляются ли поры? Или нужны какие то особенности учитывать?

зарабатываем и получаем удовольствие от процесса.

Бред сивого менаджера.

я в этом отношении "мягок". Т.е. при условии определенных доказательств всегда готов смотреть в сторону улучшения и модернизации. А тупо упираться, что больше ни чего другого нет и не бывает - не мое. Опять же если есть доказательства. Поэтому повышая уровень знаний, готов выслушать. Вот и задал вопросы А вдруг . Ведь тут и не тут покупая АВРОРА многие верят рекламным роликам, а потом разочарование. И только у понимающих есть четкое восприятие, для чего приобретается АВРОРА и что от нее ждать. НО. Все же ждут чуда, дешевого но такого же функционального как именитые бренды европейского, японского, американского производства.

зарабатываем и получаем удовольствие от процесса.

Удовольствие от высокого качества длится дольше чем радость от

что для каждого сварочного материала есть предназначенная ему газовая смесь. Грубо говоря 98/2 - нержавейка, 82/18 - конструкционные, средне и низколегированные стали. Их же можно варить и в СО2, но прочность немного ниже будет, о чём явно написано:

Саш это конечно так , но это рекомендации производителя проволоки и боле не чего .

На самом деле (если серьезное производство) то газ или смесь газов выбирают инженеры и технологи исходя из того каких параметров шов должен быть ну и конечно термообработка (если такова возможна на изделии ) тоже включает выбор газа или смеси .

Выше я выкладывал из книжки таблицы и в них смеси под МИГ сварку.

Кстати варят и в чистом аргоне и как написано в книге особо ответственное , но подготовка и т.д. должа в разы лучше быть так как получить поры в чистом Ar гораздо легче.

selco, интересное видео, особенно второе. Я думаю, что не мало важным моментом будет и характеристика источника. Да, конечно при одних и тех же параметрах, а тем более подстроенных под меньшее количество углекислоты, будет давать куда приятнее визуализацию. Не хватает еще мех свойств шва.

Но даже на чистом СО2 можно настроить источник и он будет совсем не дурно варить. Опять же появляются всякие НО! Толщина материала, поверхностное состояние, тип проволоки и омедненка или полированная и т.п.

поэтому я допускаю, что может и можно добавлять кислород в газ и результат может быть даже лучше. Но без вводных данных, на чем делали и как, не понятно на сколько выбранная смесь может позволить получить ожидаемый результат.

насчет смеси или чистого СО2, то основное, что я уловил и почему смесь стандартная 80\20 дает положительный результат: на толстых и тонких сталях дуга стабильная и минимальное количество брызг. Следовательно даже на не качественном аппарате можно получить более или менее шов. Но вот быстрый переход с толщину на толщину будет проблематичен. В отличии от более качественного оборудования и более качественно написанных программ для синергетики и пульса.

Так же особо важно, что на тонких толщинах, за счет более стабильной дуги, получаем более контролируемую дугу и следовательно у нас руки развязываются при сварки тонких сталей. Но это классика теперь в отличии от трех компонентной смеси о которой пока толком ни кто ни чего не может сказать.

После полуавтоматической сварки сплавов алюминия с магнием (или присадкой) вокруг швов остается черная копоть. Поначалу подумал что черной копотью может быть углерод, но откуда в АМг углерод?

Наткнулся на следующий текст:

"Для того, чтобы обнаружить присутствие углерода в углекислоте, не­обходимо отнять у неё кислород. Этого можно достигнуть, заставив ки­слород соединиться с каким-нибудь телом, обладающим ещё большим к нему сродством. Таков, например, металл магний, проволока которого сгорает, распространяя ослепительный свет. Зажигаю проволоку и опус­каю её в стеклянную банку, заключающую обыкновенный воздух. Прово­лока сгорает, и на дно падает совершенно белая зола. Это магнезия, со­единение металла магния с кислородом. Повторяю тот же опыт, но на этот раз погружаю горящую проволоку в сосуд с углекислотой. Теперь уже она вынуждена добывать себе кислород, отнимая его у углерода, и этот последний должен обнаружиться. И действительно, на этот раз про­волока горит не тихо, а с треском, как бы с целым рядом маленьких взры­вов. а на стенках стеклянного сосуда осаждается черная копоть. Это осво­бодившийся углерод.

Итак, в атмосферном воздухе, в невидимой для глаза форме, постоянно присутствует громадный запас углерода."

Предполагаю что копоть это и есть углерод, но откуда с среде аргона углекислый газ? Наверное раскаленный магний покидая пределы газовой защиты реагирует с углекислым газом воздуха, но почему он не реагирует со свободным кислородом и не выпадает в белый порошок?

А если в самом свариваемом металле есть какие-нибудь примеси,которые дают черный налет и необязательно это углерод?Из практического опыта своего могу сказать, что производя все одинаковые операции по подготовке детали к аргонно-дуговой сварке результат может быть разный.Наиболее хорошо варятся детали мотоциклов и авто японского производства(к примеру), из АМГ сплавов, а вот некоторые китайские детальки заставляют сильно плеваться.Как раз из них и прет чернота,хотя все операции по подготовке,повторюсь, одинаковые.

мутный , ну вроде мы как заметано, что черный налет вокруг шва после сварки образуется при сварке алюминиевых сплавов с высоким содержанием магния. Ну уж больно налёт на сажу смахивает. Хотя может и примеси.

Сметаешь так щеточкой на совочек сажу и в картридж лазерного принтера.

Теория нам говорит что это Магний и такой налет свойственет богатым магнием сплавам, особенно если и варяться они чем-то богатым магнием (5356) например. Испаряется, улетает и дает черную каемку при резком окислении. Даже на TIG сварке на -рестарте шва или от прихватки (пока одно место греется) нормальное явление с 5356 на АМг или 6063(АД31) - если сам шов блестит, а снаружи черный налет, то все как-бы нормально.

Максимилиан Спасибо. Магний он вроде не черный.

Наверное раскаленный магний покидая пределы газовой защиты реагирует с углекислым газом воздуха, но почему он не реагирует со свободным кислородом и не выпадает в белый порошок?

Уточню, не черное магний - а причина магний. И с кислородом он реагирует, но с co2 реакция куда активнее и черный налет виднее чем белый (учитывая белый налет оксида алюминия). Там еще и нитрид образуется, но сразу разрушается, а могли бы иметь зеленоватый-люнинисцентный налет

Хотите пожар до небес - попробуйте тушить горящий магний углекислотой.

Максимилиан. ))) Я так понимаю улучшать газовую защиту бесполезно? Налет будет всегда только в меньших колличествах?

di4, пробовал, от расхода аргона не зависит13-15 л/мин хватает. Попробуйте варить горелкой от себя, так копоти меньше.

Максимилиан. ))) Я так понимаю улучшать газовую защиту бесполезно? Налет будет всегда только в меньших колличествах?

А газ тут в какой-то степени вторичен, ну если только колпаком совсем накрыть, но это не решит главную проблему - обеднение сплава. У магния т. плавления почти как у алюминия и плавяться они вместе красиво, а вот температура кипения как у цинка - вот он и летит (всего + 250гр от плавления и закипел), поэтому надо играть с тепловложениями и скоростью, а черная копоть - это удобный индикатор.

Ну если уменьшить сварочную ванну и увеличить диаметр сопла горелки с линзой (для РАД), поиграться расходом может прокатит. Ну буим пробовать если алюминий в заказе появиться. Спасибо.

di4, каким образом можно уменьшить св.ванну при п/а сварке, я и не представляю. Ток сбросить если только, но и это ничего не даст- копоть не исчезнет. Нормальное это явление для п/а сварки алюминия.
А вот при ручной аргонно дугово сварке чёрной копоти на шве не должно быть , если такое появляется это значит что то не то с газовой защитой. Увеличение расхода аргона, диаметра сопла и газовая линза могут не помочь, потому что и на обычной керамике шов должен быть чистым.

Копоть может давать влага на поверхности металла. Недавно варили нержавеющие ванны и лезла копоть на поверхности шва. Потом стали перед сваркой прогревать металл пропаном и прям видно было, как с виду сухая поверхность высыхает. С алюминием сложнее, почернения рядом со швом постоянно присутствуют, но я всегда думал, что это выгорает оксидная пленка.

ARGONIUS Увеличение расхода аргона, диаметра сопла и газовая линза могут не помочь, потому что и на обычной керамике шов должен быть чистым.

Что есть "обычная керамика" ? Спасибо.

Уменьшить сварочную ванну на полуавтомате, по моему мнению (возможно я ошибаюсь потому как я на практике такого еще не пробовал), можно снижением напряжения, уменьшением скорости подачи проволоки, увеличением скорости сварки и уменьшением температуры сопутствующего подогрева. Правда у нас процесс импульсный, но параметры импульса я задаю в ручную. У полуавтоматов тоже есть сопла с различным внутренним диаметром выходного отверстия.

di4, если уменьшить на полуавтомате значение тех характеристик про которые вы говорите, возможно ванна и уменьшится, но ведь тем самым уменьшится и сварочный ток. Следовательно чтоб заварить тот же объём, нужно будет делать больше проходов.
Стандартое керпмическое сопло для ручной аргонно дуговой сварки отличается от такого же сопла с газовой линзой. Керамика с газовой линзой такая, побольше в диаметре и вместо обычного цангодержателя стоит латунный цилиндрик с набором сеточек внутри, они нужны чтобы поток аргона из сопла был спокойным, ламинарным. Резко уменьшается расход аргона и качество газовой защиты становится лучше. Нет завихрений защитного газа и как следствие исключается примешивание воздуха в зону защиты ванны.
На полуавтоматы такая штука конструктивно не подходит, во всяком случае я о таком не слышал.

Понимаете в чем фигня. Если по бокам шва остаеться черная копоть при полуавтоматической сварки это означает, что процесс полуавтоматической сварки в отличае от сварки ручной аргонодуговой неплавящимся электродом происходит с меньшим легированием шва так как выгорает магний и это означает, что при полуавтоматической сварке необходимо брать проволоку более легированную магнием чем при РАД, с точки зрения логики.

Улучшение защиты при полуавтоматической сварке можно произвести увеличением внутреннего диаметра сопла, изменением вылета электрода (расстояния от конца наконечника до плоскости свариваемой детали), изменением заглубления наконечника в сопло или приспособлениями.

1. Заменить сопло.

2. Изменение вылета электрода. Горелочку пониже опустить при сварке.

3. И зменением заглубления наконечника в сопло. Производители выпускают вставки (деталь между горелкой и наконечником) и наконечники разной длинны. И собрав эту конструкцию зачастую заглубление оказывается различным. Я наблюдал от 5 до 0 мм. Идеально по моему мнению 1-2 мм заглубление. Но для импульсных процессов зачастую заглубление до 7 мм так как там длиная дуга.

4. Самое интересное. Приспособления. Старый способ. Например при сварке стыкового шва паралельно вдоль шва с одной стороны можно с положить уголок 50х50х5. И опереться есть на что и защита лучше. а лучше два уголка с обоих сторон.

di4, не знаю как вам удастся улучшить защиту, возможно что то и получится, я просто варил углом вперёд, горелку вёл от себя. Правда так проплавление похуже, но я просто увеличил ток, и получалось нормально. По поводу копоти я вообще не парился, выгорает там чего то, ну и ладно. Кстати я вовсе не уверен что это именно магний. Просто потрите в пальцах кусочек АМг, разве тёмный налёт не остаётся? Может эта копоть просто испарившийся и оседающий по краям шва алюминий? При ручной сварке то ведь не происходит такого, потому что там переноса металла нет, присадка просто плавится в краешке ванны. Это при нормальном процессе сварки. А попробуйте макнуть вольфрам в ванну, что получится? Всплеск и чернота вокруг. Потому что это уже не режим горения дуги, а короткое замыкание. Понятно что импульсный режим на п/а это не короткое замыкание, но ванну там спокойной как при ручной сварке не назовёшь. Всё таки при переносе падающие от проволоки капли выбиваютиз ванны какое то количество алюминия, а сама дуга то что выплеснулось испаряет. Вот она и чернота и не столь важно что это магний или алюминий. В крутых брэндовых источниках борются с этим явлением изменяя сварочный ток в разные фазы отрыва и погружения капли в сварочную ванну и швы таких источников гораздо эстетичнее. У линкольна вроде STT называется такая технология, сапёр_24 выкладывал в теме про импульсники.
Так то эта технология используется для чёрной стали в углекислоте, но я думаю что то подобное есть во всех дорогих сварочных полуавтоматах, для каждого материала и величины сварочных параметров своя программа управления каплепереносом. Отсюда и такое обилие прошивок и программ управления горением дуги. Возможно я ошибаюсь в чём то, если кто поправит буду признателен.
Но это теория, а на практике- далась Вам эта чернота. Лишь бы шов сам пористым не был. Про выгорание (или теоретическое выгорание) легирующих элементов я бы вообще не стал заморачиваться. В самой проволоке уже по умолчанию количество легирующих элементов должно быть выше. На нержавейке это так и есть, не думаю что это правило не соблюдается производителями для Ал проволоки. Лишь бы присадка или проволока соответствовала свариваемому материалу. А "поправка на выгорание" это головная боль производителя, а не Ваша.

Основной мерой борьбы с пористостью при сварке алюминия является снижение концентрации растворенного в нем водорода до предела ниже 0,69—0,7 см3/100 г металла. Источник: водорода, растворяющегося в металле шва при аргонодуговой сварке,—влага, адсорбированная поверхностью металла, и влага, входящая в состав оксидной пленки в виде гидратированных оксидов (поверхностная влага). Количество ее определяется состоянием поверхности металла и зависит от предшествующей обработки его перед сваркой.

В табл. 9.1 приведены значения коэффициента а, характеризующего объем водорода в см3, выделяющегося в 1 см2 поверхности алюминиевой проволоки и фольги при нагреве после различной обработки их перед сваркой и хранения до 1 суток.

Таблица 9.1 Значения коэффициента а для различных способов подготовки поверхности, см3/см2

Для основного металла, а 1

Для проволоки, а 2

Травление в растворе ортофосфорной кислоты

Травление в щелочной ванне с осветлением в азотной кислоте

Зачистка поверхности проволочной щеткой

Принимая при аргонодуговой сварке за основной источник водород, образующийся при разложении поверхностной влаги, можно ориентировочно подсчитать концентрацию водорода в шве, оценить вероятность появления в нем пор.

При сварке встык без разделки кромок пластин толщиной s ( рис. 9.2 ) в образовании единицы длины шва участвуют поверхности основного и присадочного металлов S o.м . и S пр :

S o.м. = l 1 + l 2 + 2s, (9.5)
S пр = π dL, (9.6)

где d — диаметр проволоки; L — длина расплавленной проволоки на единицу длины шва.

Если не учитывать потери присадочного металла при сварке, то

Тогда уравнение (9.6) примет вид

S пр = 4F H /d. (9.7)

Рис. 9.2. Сечение сварного соединения и основные размеры шва

Если предположить, что весь водород, выделяющийся с поверхности основного и присадочного металла, полностью растворяется в сварочной ванне, то концентрация водорода в ней возрастет на некоторую величину [Н] д см3/100 г (расчет ведется на 100 г металла):

Суммарная концентрация водорода в шве [Н] ш без учета возможных потерь может быть определена как сумма исходной концентрации [Н] исх и дополнительной [Н] д , т.е. [Н] ш = [Н] исх + [Н] д . Учтя полученные выражения для поверхностей основного (9.1) и присадочного (9.6) металлов, участвующих в образовании шва, получим

где m и n — доли участия основного и присадочного металлов в образовании шва; [Н] о.м м и [Н ] пр — исходная концентрация водорода в основном и присадочном металлах, см3/100 г.

Из анализа этого уравнения следует, что для снижения концентрации водорода в металле швов при сварке алюминия до пределов, исключающих возможность появления в нем пор, могут быть рекомендованы следующие меры: применение рациональной обработки поверхности проволоки и деталей перед сваркой с целью уменьшения коэффициентов а; сокращение удельной поверхности проволоки, участвующей в образовании шва, путем увеличения диаметра присадочной проволоки и уменьшения доли участия присадочного металла в образовании шва.

В табл. 9.2 приведены данные ориентировочного расчета содержания водорода в металле шва, полученного при однопроходной аргонодуговой сварке плавящимся электродом пластин алюминия встык толщиной 7 мм без разделки кромок. Данные для расчета: s = 0,7 см; d = 0,13 см; е 1 = 1,1 см; е 2 = 0,5 см; F ш = 1,45 см2; F н = 0,48 см2; F пр = 0,97 см2;γ = 2,7 г/см3; [Н] о.м и [Н] пр = 0,1 см3/100 г металла:

Таблица 9.2 Результаты ориентировочного расчета содержания водорода в металле швов

Содержание
водорода
в шве, см3/100 г

Вероятность
появления пор

Травление в растворе
щелочи с последующим
осветлением в растворе
HNO 3

Травление в растворе
щелочи с последующим
осветлением в растворе
HNO 3

Повышенная склонность алюминиевых сплавов к порообразо­ванию является одним из главных затруднений на пути полу­чения сварных соединений высокого качества. Некоторые ученые считают, что пористость больше определенного размера при опре­деленном взаимном расположении отдельных пор существенно понижает прочность и пластичность сварных соединений. Поэтому в СССР и за рубежом проводятся работы по выяснению причин возникновения пористости и определению методов их предупреждения. Основной причиной пористости в алюминиевых сплавах является присутствие в них водорода. Кроме водорода, в сварочную ванну возможно попадание азота и кислорода. Азот практически не растворяется в алюминии, а дает нитрид алюминия, переходящий в шлак, и поэтому не ока­зывает существенного влияния на образование пористости. При сварке в защитных газах кислород в сварочную ванну обычно попадает в небольших количествах, так как содержание его в за­щитных газах строго ограничено. Кислород, попадающий в ванну, соединяется с алюминием в окисел А1203 и, очевидно, также не влияет на появление пористости в металле шва.

Образование пористости зависит от чистоты исходного металла, качества подготовки под сварку поверхности свариваемого и при­садочного материалов, чистоты защитных газов, состава защитной атмосферы, качества травления и полноты удаления продуктов травления, способа сварки, параметров сварки, вида переноса капель металла и других факторов.

Причины и механизм образования пористости исследовали многие советские ученые. Основным источником насы­щения металла шва атомарным водородом является влага, адсор­бированная окисной пленкой на поверхности сварочной про­волоки и свариваемых кромках.

Избыток газообразного водорода в металле объясняется повы­шением растворимости газов, особенно водорода, в жидком алю­минии и скачкообразным уменьшением растворимости его в кри­сталлизующемся металле. Температура сварочной ванны в голов­ной ее части достигает 1600—1700° С, а температура переносимой в столбе дуги капли еще выше; Установлено, что наивысшая растворимость водорода в алюминии имеет место при температуре 2050° С и достигает 20,9 см 3 на 100 г металла, т. е. объем раство­ренного водорода чрезвычайно велик.

По мере остывания сварочной ванны из-за резкого падения растворимости атомарный водород стремится выделиться, но, встречаясь и объединяясь с другими атомами водорода, с центрами кристаллизации и загрязнениями в металле, рекомбинирует в молекулы и образует газовые пузыри. Эти пузыри всплывают, пока позволяет вязкость окружающего металла. Не успевшие всплыть газовые пузыри после кристаллизации металла остаются в нем в виде неплотностей, как правило, сферической формы — газовой пористости.

Кроме газовой пористости, имеющей сферическую форму, различают усадочную пористость, не имеющую определенной формы и располагающуюся по границам зерен.

В некоторых случаях в сварных соединениях из алюминиевых сплавов нарушается герметичность в околошовной зоне. Это явление наблюдается в сварных деталях малой толщины (до 1 мм). В деталях большей толщины негерметичности может не быть, однако в околошовной зоне отмечается вспучивание металла. Исследования показали, что причиной возникновения негерме­тичности в околошовной зоне является междендритная водород­ная микропористость, в некоторых случаях — сквозная. При нагреве сварочной дугой в околошовной зоне частично оплав­ляются границы зерен. Диффундирующий из основного металла к этим границам водород вытесняет расплавленную эвтектику, в результате чего в околошовной зоне образуется пористость, имеющая вид разветвленных каналов. Пористость такого типа опасна, так как часто не выявляется непосредственно после сваркипри контроле сварных швов, а открывается при эксплуатации сварных узлов.

Образованию пористости сварных соединений способствует не только водород, попадающий в сварочную ванну с присадочным материалом, газами и из влаги, адсорбированной поверхностной окисной пленкой, но и водород, растворенный в металле при изготовлении полуфабрикатов. Внутренние напряжения создают направленный поток водорода в растянутые места решетки, и про­грессирующая сегрегация водорода в этих местах может привести к ослаблению сил сцепления и зарождению трещин.

При достаточно высокой температуре или при длительном постоянно действующем напряжении атомы водорода диффунди­руют и выходят из решетки металла к поверхности раздела фаз, микропустот и рекомбинируют в молекулы водорода. Так как молекулы водорода неспособны диффундировать в металле, то в несплошностях возможны высокие давления, которые приводят к образованию не только пустот (пор), но и трещин в кристалли­зующемся металле. Диффундирующий из основного металла водо­род оказывает влияние на образование газовой пористости в ме­талле шва и усадочной пористости по границам оплавленных зерен в околошовной зоне.

По уменьшению пористости сварных соединений разработано много рекомендаций, которые можно разделить на две группы:

1) организационно-технические и технологические;

Ниже приведены основные организационно-технические и тех­нологические рекомендации по уменьшению пористости.

1. Поверхностная окисная пленка на присадочной проволоке и основном металле гигроскопична, поэтому для уменьшения пористости следует тщательно удалять ее перед сваркой.

2. Одной из причин возникновения пористости является нару­шение газовой защиты шва при сварке. Образование турбулентных потоков газа приводит к перемешиванию воздуха с расплавленным металлом и, как следствие, к повышенному его загрязнению. Установлено, что характер потока защитного газа (ламинарность или турбулентность) зависит от расхода газа, скорости истечения, диаметра сопла, вылета вольфрамового электрода, расстояния сопла до изделия и типа сварного соединения. Оптимальные значения этих параметров определяют экспериментально.

3. На увеличение пористости оказывают влияние остатки на поверхности свариваемых и присадочных материалов продук­тов травления NaOH , поэтому необходимо обеспечить тща­тельную промывку деталей и проволоки после травления.

4. Для уменьшения пористости наобходимо повышать чистоту присадочной проволоки. При этом следует стре­миться к относительному уменьшению площади поверхности при­садочной проволоки, т. е. применять присадочную проволоку возможно большего диаметра. Для получения сварных швов высокого качества необходима тщательная подготовка материалов перед сваркой. По методике суммарной оценки качества подготовки материалов к сварке, разработанной в Англии, две пластины размером 25 x 37 мм, толщиной 1,5 мм сваривают по большей стороне аргоно-дуговой сваркой и рассматривают качество металла в изломе.

5. Объем пористости в сварных швах алюминиевых сплавоввозрастает при увеличении выдержки свариваемых кромок и присадочной проволоки после их обработки до момента сварки. Поэтому необходимо предельно сокращать эту выдержку. Проводятся работы по увеличению допустимого времени от подготовки деталей к сварке до сварки.

6. Одним из способов уменьшения пористости является пра­вильный выбор защитных газов. Например, при применении в ка­честве защитной среды смеси Аr+He (65—75% Не по объему) пористость уменьшается. При этом большое зна­чение имеет чистота защитных газов.

Металлургические рекомендации по уменьшению пористости

Металлургические рекомендации основаны на том, что умень­шение пористости возможно либо за счет ограничения протекания реакции взаимодействия жидкого металла с влагой путем увели­чения скорости кристаллизации сварочной ванны, либо, наоборот, за счет создания условий для полного протекания реакции удале­ния водорода путем увеличения продолжительности существова­ния жидкой ванны.

Выбор одного из металлургических способов уменьшения пористости зависит от типа свариваемого алюминиевого сплава (термически упрочняемого или термически неупрочняемого, склон­ного к образованию трещин или не склонного и др.), а также от толщины свариваемых деталей, их жесткости и других пара­метров. Детали малой толщины целесообразно сваривать на жест­ких режимах, т. е. применять первый из способов, а детали боль­шой толщины из термически неупрочняемых и не склонных к об­разованию трещин — по второму способу, учитывая, что при этом можно повысить производительность процесса сварки.

Иногда для уменьшения пористости применяют подогрев деталей перед сваркой, что увеличивает пребывание металла в жидком состоянии и таким образом облегчает удаление из него растворен­ных газов. Температуру подогрева назначают в зависимости от типа свариваемого алюминиевого сплава. Так, при сварке сплавов системы Аl— Mg подогрев свыше 100—150° С может привести не к снижению, а к увеличению пористости, так как в этих спла­вах пленка окиси магния, образующаяся на поверхности расплав­ленного металла, слабо защищает жидкий металл от воздействия влаги.

Для уменьшения пористости целесообразно применять много­дуговую сварку термически неупрочняемых алюминиевых спла­вов, что приводит к увеличению продолжительности существова­ния жидкой ванны.

Для уменьшения пористости сварных швов в СССР и за рубе­жом проводили опыты с добавлением в защитный газ 1—3% Сl по объему. Хлор, активно взаимодействуя с образовавшимся водо­родом, уменьшает его количество в сварочной ванне. Известно также, что пористость можно уменьшить путем наложения ультра­звуковых колебаний на жидкий и кристаллизующийся металл сварочной ванны. Ультразвуковые колебания облегчают выход водорода из ванны и ограничивают возможность образова­ния крупных пор. Однако применение хлора и ультразвука суще­ственно усложняет технологический процесс сварки и условия работы обслуживающего персонала.

Читайте также: