Почему появляются сварочные на сварочном шве поры

Обновлено: 27.04.2024

Растворение водорода в металле при дуговой сварке и связанная с этим пористость шва зависят также от рода сварочного тока. Так, при сварке на переменном токе при прочих равных условиях растворение водорода и пористость шва максимальные, при сварке на постоянном токе прямой полярности (минус на электроде) — значительно меньше, а при обратной полярности — минимальные.

Считают, что водород растворяется в жидком металле в виде положительно заряженных ионов (протонов), образующихся при отрыве электрона от атома. Поэтому при сварке на постоянном токе избыток электронов вблизи катода и анода препятствует ионизации водорода, уменьшая тем самым растворение его как в капле на конце электрода, так и в сварочной ванне.

При сварке переменным током в момент перехода тока через нулевое значение вблизи жидкого металла электронов скапливается меньше, в силу чего возрастает количество протонов водорода в приэлектродных областях и жидкий металл оказывается ничем не защищенным от растворения в нем водорода.

Чтобы водород не попадал в сварочную ванну, кромки свариваемого металла и поверхность электродной проволоки тщательно очищают от ржавчины и масла, а флюс перед употреблением прокаливают при температуре 800—900°С.

Однако и в этом случае в производственных условиях не удается полностью избежать попадания водорода в зону сварки. Поэтому водород в зоне дуги связывают в химические соединения, нерастворимые в жидком металле.

Для этого в сварочные флюсы вводят плавиковый шпат (CaF2) и кремнезем (Si02). При этом в зоне сварки протекают следующие реакции:


Образующееся соединение HF нерастворимо в жидком металле, поэтому содержание водорода в металле шва и его склонность к порам уменьшаются. Следует отметить, что присутствие во флюсе CaF2 без Si02 малоэффективно.

С увеличением влажности углекислого газа неуклонно возрастает содержание водорода в металле шва:

Поры, наблюдаемые в сварных швах, связаны с процессами выделения газов в макро- и микрообъемах.

При объемном пересыщении металла сварочной ванны газами, вызванном уменьшением растворимости из-за снижения температуры металла, в основном образуются макропоры. Рост пузырьков газа в этом случае происходит в основном в результате конвективной диффузии газа из окружающих объемов металла. Скорость роста пузырьков определяется степенью пересыщения ванны газами и скоростью десорбции газов в зародыш.

При локальном пересыщении жидкого металла у фронта кристаллизации зарождение и развитие пузырьков наиболее вероятно на стадии остановки роста кристаллов. Пузырьки в этом случае в основном развиваются вследствие диффузии атомов (ионов) газа из прилегающих микрообъемов металла. Размеры пузырьков определяются в основном длительностью остановок в росте кристаллов. При кристаллизации первых слоев и длительности остановок 0,1. 0,2 с, характерных для наиболее употребляемых режимов сварки, вероятно образование мельчайших пор у линии сплавления. Роль азота в образовании крупных пор при отсутствии конвективной массопередачи газа невелика.

Получение плотных швов при сварке покрытыми электродами и порошковыми проволоками может быть достигнуто путем снижения содержания газов в сварочной ванне ниже предела растворимости в твердом металле при температуре плавления. В этом случае образование пузырьков газа в момент кристаллизации не происходит. Этот способ обеспечения плотных швов реализуется в электродах с покрытием основного вида.

При увлажнении электродного покрытия основного вида содержание водорода в сварочной ванне возрастает выше его предела растворимости в твердом железе при температуре плавления и попадает в наиболее опасную с точки зрения образования пор концентрационную зону скачка растворимости (12. 27 см 3 /100 г). При таких концентрациях водорода процесс образования и удаления пузырьков газа из сварочной ванны протекает вяло, что приводит к образованию пор.

Поры, обнаруживаемые в швах при сварке длинной дугой электродами с карбонатно-флюоритным покрытием, вызваны выделением азота. Плохое смачивание капель электродного металла и ванны шлаками электродов этого вида создает условия для непосредственного контакта металла с газовой фазой и повышенной абсорбции азота.

Газом, вызывающим пористость швов при сварке электродами с рутиловым и руднокислым покрытиями, в основном является водород. Выделение оксида углерода и азота играет второстепенную роль.

Получение плотных швов при сварке этими электродами достигается путем создания благоприятных условий для повышенной абсорбции водорода на стадии капли и интенсивного роста и быстрого удаления образовавшихся пузырьков газа из сварочной ванны до момента ее кристаллизации. Такая ситуация реализуется при обеспечении содержания водорода в сварочной ванне, значительно превышающем предел его растворимости в жидком железе при температуре плавления, т. е. намного больше 27 см 3 /100 г.

Введение в рутиловые и руднокислые покрытия материалов, содержащих кристаллизационную влагу, способствует интенсивной абсорбции водорода каплями электродного металла и высокотемпературной областью сварочной ванны, что создает впоследствии благоприятные условия для зарождения, роста и удаления пузырьков газа до момента кристаллизации сварочной ванны.

Увеличение силы тока при сварке электродами с рутиловым и руднокислым покрытиями повышает вероятность образования пор в металле шва, что обусловлено перегревом второй половины электрода, уменьшением содержания влаги в перегретом покрытии и содержания водорода в металле шва, выполненном перегретой частью электрода до опасного концентрационного уровня (12. 27 см 3 /100 г).

При введении значительных количеств алюминия, титана, кремния в покрытия рутиловых и руднокислых электродов возрастает вероятность образования пор, обусловленная ростом концентрации кремния в металле сварочной ванны.

Будучи поверхностно-активным элементом, кремний тормозит десорбцию водорода, дегазация ванны идет вяло, в металле образуются поры. Подобное влияние может оказывать сера и другие поверхностно-активные элементы.

Раскисление покрытий рутиловых или руднокислых электродов кремнием, титаном, алюминием, углеродом, высокое содержание этих элементов в основном металле, повышение температуры прокалки, снижение окислительного потенциала покрытия и др. приводят к снижению скорости выделения газов и к образованию пористости.

Подавление кремневосстановительного процесса путем повышения основности шлака, введения карбонатов в покрытие и окисления кремния водяным паром способствует увеличению скорости выделения водорода. Предложенный метод интенсификации выделения водорода использован при создании промышленных марок рутил-карбонатных электродов серии АНО.

Менее падежная защита металла от воздуха при сварке порошковыми проволоками открытой дугой приводит к большей (по сравнению с электродами) абсорбции азота металлом, поэтому выделение азота из ванны оказывает существенное, а в ряде случаев решающее, влияние на пористость. В проволоках карбонатло-флюоритного типа предупреждение выделения азота в виде газовой фазы достигается легированием металла титаном и алюминием. Эффективно снизить абсорбцию азота можно, зашитив зону сварки углекислым газом, смесями газов на основе аргона либо используя проволоку двухслойной конструкции.

Все отклонения от технологических параметров, вызванные небрежностью в работе, нарушением режимов и внешними причинами, часто не зависящими от сварщика, могут привести к возникновению дефектов в сварочном шве и околшовной зоне, попадающей в область термического воздействия. К дефектам приводит и нарушение технологических приемов как самого процесса сварки, так и некачественная подготовка, неисправность оборудования, отклонения от норм качества сварочных материалов, влияние погодных условий, низкая квалификация сварщика.

Возникновение дефектов часто связано с металлургическими и тепловыми явлениями, возникающими в процессе образования сварочной ванны и ее кристаллизации (горячие и холодные трещины, поры, шлаковые включения и т.д.; Эти дефекты снижают прочность и надежность сварного соединения, его герметичность и коррозионную стойкость. Все это может оказать значительное влияние на эксплуатационные возможности всей конструкции и даже вызвать ее разрушение.

Дефекты сварочных швов могут быть наружными и внутренними.

Наружные дефекты сварочных швов

К наружным дефектам сварных швов (рис.1) относят нарушение размеров и формы шва, подрезы и другие отклонения, которые могут быть обнаружены при внешнем осмотре сварного соединения.

Нарушение формы и размеров сварного шва чаще всего вызваны колебаниями напряжения в электрической сети, небрежностью в работе или низкой квалификацией сварщика, проявляющейся в неправильном выборе режимов, неточном направлении электрода и методике его перемещения. Дефекты проявляются в неодинаковой ширине сварочного шва по его длине, в неравномерности катета угловых швов, чрезмерной выпуклости и резких переходах от основного металла к наплавленному. Отклонения от размеров и формы сварного соединения, проявляющиеся в угловых швах, связаны с неправильной подготовкой кромок, неравномерной скоростью сварки, а также с несвоевременным контрольным обмером шва. При автоматической и полуавтоматической сварке эти дефекты чаще всего связаны с колебаниями напряжения, проскальзыванием проволоки в подающих роликах, нарушениями режимов сварки.

Непровар — местное отсутствие сплавления между свариваемыми элементами, между основным и наплавленным металлом или отдельными слоями шва при многослойной сварке. Причинами непровара являются некачественная подготовка свариваемых кромок (окалина, ржавчина, малый зазор, излишнее притупление и т.д.), большая скорость сварки, смещение электрода с оси стыка, недостаточная сила тока. В результате непровара снижается сечение шва и возникает местная концентрация напряжений, что в конечном итоге снижает прочность сварного соединения. При вибрационных нагрузках даже мелкие непровары могут снижать прочность соединения до 40%. Большие непровары корня шва могут снизить прочность до 70%. Поэтому если непровар превышает допустимую величину, участок шва подлежит удалению с последующей переваркой.

Подрез — дефект, наиболее часто встречающийся при сварке. Он выражен в виде углубления по линии сплавления сварного шва с основным металлом. В результате подреза происходит местное уменьшение толщины основного металла, что приводит к снижению прочности. Особенно опасен подрез в случаях, когда он расположен перпендикулярно действующим рабочим напряжениям. Подрез возникает обычно при повышенном напряжении дуги с завышенной скоростью сварки, когда одна из кромок проплавляется глубже, жидкий металл стекает на горизонтальную плоскость и его не хватает для заполнения канавки. При сварке угловых швов подрезы возникают в основном из-за смещения электрода в сторону вертикальной стенки, что вызывает значительный разогрев, плавление и стекание металла на горизонтальную полку. В стыковых швах подрезы образуются при сварке на больших токах и при неправильном положении присадочного материала. К подрезу могут привести увеличенные углы разделки кромок. Этот дефект обнаруживается визуально и при отклонениях выше установленной нормы полежит переварке с предварительной зачисткой. Подрезы небольшой протяженности, ослабляющие сечение шва не более чем на 5% в конструкциях, работающих под действием статических нагрузок можно считать допустимыми. В конструкциях, работающих на выносливость, подрезы недопустимы.

Наплыв — проявляется в виде натекания металла шва на поверхность основного металла без сплавления с ним. Наплывы резко изменяют очертания швов и тем самым снижают выносливость констукции. Причиной этого дефекта может стать пониженное напряжение дуги, наличие окалины на свариваемых кромках, медленная сварка, когда появляются излишки расплавленного присадочного металла. Чаще всего наплывы возникают при сварке горизонтальных швов на вертикальной плоскости. При сварке кольцевых поворотных стыков наплывы могут возникать при неправильном расположении электрода относительно оси шва. Наплывы большой протяженности недопустимы.

Прожог — сквозное проплавление обычно возникает из-за большого тока при малой скорости сварки. Проявляется он в виде сквозного отверстия в сварочном шве, которое возникает в результате утечки сварочной ванны. При многослойной сварке прожог возникает в процессе выполнения первого прохода шва. Причинами прожога могут стать - завышенный зазор между свариваемыми кромками, недостаточная толщина подкладки или неплотное ее прилегание к основному металлу, что создает предпосылку для утечки сварочной ванны. Прожог может образоваться при внезапной остановке подачи защитного газа. При сварке поворотных кольцевых стыков прожоги вызываются неправильным расположением электрода относительно зенита. Дефект обнаруживается визуально и переваривается после предварительной зачистки. Ожоги вызываются попаданием жидкого металла на участки, которые находятся вне сварного шва.

Незаваренный кратер — дефект сварного шва, который образуется в виде углублений в местах резкого отрыва дуги в конце сварки. В углублениях кратера могут появляться усадочные рыхлости, часто переходящие в трещины. Кратеры обычно появляются в результате неправильных действий сварщика. При автоматической сварке кратер может появляться в местах выводных планок, где обрывается сварочный шов. Кратеры часто являются причиной начала развития трещин и поэтому недопустимы. Их зачищают и заваривают.

Поверхностное окисление — окалина или пленка оксидов на поверхности сварного соединения. Поверхностное окисление зависит от плохой защиты сварочной ванны, качества подготовки свариваемых кромок, неправильной регулировки подачи защитного газа, его составом, большим вылетом электрода.

Свищ — воронкообразное углубление в сварочном шве, развивающееся из раковины или большой поры. Причиной развития свища чаще всего является некачественная подготовка поверхности и присадочной проволоки под сварку. Дефект обнаруживается визуально и подлежит переварке.

Рис. 1 Наружные дефекты сварных швов, выявляемые внешним осмотром: А — подрез; Б — наплыв; В — прожог; Г — незаваренный кратер; Д —свищ. Рис. 2. Трещины в сварном шве и околошовной зоне: А — продольная горячая трещина; Б — холодная трещина в околошовной зоне.

Внутренние дефекты сварочных швов

Трещины бывают холодные и горячие (рис. 2). Трещины могут быть как наружными, так и внутренними. Это самые опасные дефекты сварного соединения, часто приводящие к его разрушению. Проявляются они в виде разрыва в сварном шве или в прилегающих к нему зонах. Сначала трещины образуются с очень малым раскрытием, но под действием напряжений их распространение может быть соизмеримо со скоростью звука, в результате чего происходит разрушение конструкции. Причинами образования трещин являются большие напряжения, возникающие при сварке. Чаще всего трещины проявляются при сварке высокоуглеродистых и легированных сталей в результате быстрого охлаждения сварочной ванны. Вероятность появления трещин увеличивается при жестком закреплении свариваемых деталей.

Горячие трещины — появляются в процессе кристаллизации металла при температурах 1100 —1300°С вследствие резкого снижения пластических свойств и развития растягивающих деформаций. Появляются горячие трещины на границах зерен кристаллической решетки. Появлению горячих трещин способствует повышенное содержание в металле шва углерода, кремния, водорода, никеля, серы и фосфора. Горячие трещины могут возникать как в массиве шва, так и в зоне термического влияния. Распространяться горячие трещины могут как вдоль, так и поперек шва. Они могут быть внутренними или выходить на поверхность.

Холодные трещины — возникают при температурах ниже 120°С, то есть сразу после остывания сварочного шва. Кроме того, холодные трещины могут возникнуть и через длительный промежуток времени. Причиной появления холодных трещин являются сварочные напряжения, возникающие во время фазовых превращений, приводящих к снижению прочностных свойств металла. Причиной появления холодных трещин может стать растворенный атомарный водород, не успевший выделиться во время сварки. Причинами попадания водорода могут служить непросушенные швы или сварочные материалы, нарушения защиты сварочной ванны.

Поры — представляют собой полости внутри шва, заполненные не успевшим выделиться газом (в первую очередь водородом). Они могут быть округлой или вытянутой формы, а их размеры зависят от размеров пузырьков образовавшихся газов. Поры могут быть одиночными или развиваться целой цепочкой вдоль сварочного шва. Основными причинами появления пор являются: присутствие вредных примесей в основном или присадочном металлах, ржавчина или другие загрязнения, не удаленные со свариваемых кромок перед сваркой. Повышенное содержание углерода также способствует появлению пор. Поры могут появляться при нарушениях защиты сварочной ванны, повышенной скорости сварки. Основной причиной появления пор при сварке плавящимся электродом является отсыревшее покрытие. Одиночные поры не опасны, но их цепочка влияет на прочность сварного соединения. Участок сварочного шва, в котором присутствуют поры, подлежит переварке предварительной механической зачисткой.

Шлаковые включения — это дефекты сварного шва, выраженные в наличии полостей, заполненных не успевшим всплыть шлаком. Образование шлаковых включений происходит при некачественной подготовке свариваемых кромок и присадочного материала, завышенной скорости сварки или плохой защите ванны. При сварке в защитных газах шлаковые включения встречаются редко. Шлаковые включения могут иметь размер до нескольких десятков миллиметров и поэтому являются очень опасными. Участок шва, на котором шлаковые включения превышают допустимые нормы, подлежит вырубке переварке.

Вольфрамовые включения — возникают при нарушении защиты сварочной ванны при сварке неплавящимся вольфрамовым электродом. Кроме этого вольфрамовые включения возникают при коротких замыканиях или завышенной плотности тока. Особенно часто встречаются вольфрамовые включения при сварке алюминия и его сплавов, в которых вольфрам нерастворим.

Оксидные включения — образуются в результате образования труднорастворимых тугоплавких пленок. Чаще всего они возникают вследствие значительных поверхностных загрязнений или при нарушениях защиты сварочной ванны. Являясь прослойкой в массиве шва, оксидные включения резко снижают прочность сварного соединения могут привести к его разрушению под приложенной в процессе эксплуатации нагрузкой.

Возникновение пор (газовых пузырей) в шве связано с выделением водорода или азота либо окиси углерода из металла в момент его затвердевания.

Водород может попадать в зону сварки вместе с маслом и ржавчиной, находящимися на поверхности электродной проволоки и на кромках свариваемого металла при плохой их очистке, а также при использовании влажного флюса или влажного защитного газа при сварке на открытом влажном воздухе.

Азот может попадать в зону сварки при плохой ее защите от воздуха; вместе с защитным газом (аргоном, углекислым газом); вследствие подсоса воздуха через зазоры между свариваемыми кромками, а также вместе с воздухом, находящимся между зернами флюса. При этом чем более крупные зерна имеет флюс (меньше его насыпной вес), тем больше азота и кислорода попадает в зону сварки.

Растворимость водорода и азота в жидком металле весьма велика и неуклонно возрастает с повышением температуры до 2380°С для водорода и до 2200°С для азота.

Растворяясь в жидком металле (особенно в каплях при их переносе через дуговой промежуток), водород и азот попадают в сварочную ванну и при последующем ее остывании (до момента затвердевания металла) лишь в небольшом количестве выделяются из нее.

При затвердевании металла растворимость в нем водорода и азота скачкообразно падает (рис. 32), и избыток их выделяется в виде пузырьков. Вследствие быстрого затвердевания металла пузырьки газа не успевают полностью выделиться в атмосферу и остаются в шве в виде продолговатых пор.

Чем больше водорода или азота попадает в зону сварки, тем больше их растворяется в жидком металле и тем большая вероятность образования пор в шве.

При неизменном количестве растворенного в ванне водорода или азота увеличение времени пребывания металла ванны в жидком состоянии (уменьшение скорости кристаллизации) способствует дегазации жидкого металла и уменьшает вероятность образования пор в шве. Благодаря этому, например, при электрошлаковой сварке поры в шве не образуются.

На удаление газов из сварочной ванны оказывает влияние и ее форма: из мелкой и широкой ванны газы удаляются легче, чем из глубокой и узкой.

Увеличение скорости дуговой сварки и уменьшение сварочного тока (уменьшение погонной энергии сварки), равно как и понижение температуры свариваемого металла, наоборот, приводят к увеличению скорости кристаллизации и повышению склонности шва к образованию пор.

С увеличением напряжения дуги при сварке под флюсом и в углекислом газе повышается содержание азота в шве и вероятность образования в нем пор. Так, например, при сварке в углекислом газе стыковых соединений из СтЗ проволокой Св-08Г2С диаметром 2 мм увеличение напряжения дуги более 40 В при токе 360—380 А приводит к образованию пор в металле шва (табл. 6).

Таблица 6. Влияние напряжения дуги на содержание азота и образование пор в шве при сварке в углекислом газе.

Ошибки и дефекты сварки, о которых нужно знать начинающему сварщику

Ошибки и дефекты сварки, о которых нужно знать начинающему сварщику

Вы недавно приобрели сварочный инвертор и уже научились мало-мальски ставить прихватки. Прошли первые шаги сварщика, освоили — как зажигать электрод и умеете стабильно удерживать дугу.

Настало время переходить к более серьёзным знаниям, знать ошибки сварки и уметь их анализировать. На первых порах будет сложно, куда же без этого. Однако со временем вы поймёте, и будете разбираться «на глаз», что не так в сварном шве.

Ошибки и дефекты сварки, о которых нужно знать начинающему сварщику

Дефекты корневого шва — непровар или недостаточное проникновение металла вдоль корня шва. Чаще всего данная проблема образуется в результате заниженного тока для сварки или в большом диаметре выбранного электрода. Нужно увеличить сварочный ток, но не переусердствовать, поскольку можно получить прожог корневого шва.

Дефекты сплавления — знакомая ситуация многим начинающим сварщикам, когда вроде бы сваренная нормально заготовка рассыпается по швам. Происходит данная проблема по причине несплавления основного металла с наплавленным. Всё дело в неправильном подборе электродов, они недостаточного диаметра и не справляются с разогревом холодного металла. Нужно подобрать электроды большего диаметра или рассмотреть возможность подогрева металла.

Ошибки и дефекты сварки, о которых нужно знать начинающему сварщику

Дефекты кромок шва — ещё одной распространённой проблемой сварки, являются дефекты кромок. Расплавленные и неровные, они делают сварочное соединение некрасивым. Как правило, проблема кроется в завышенных параметрах сварочного тока, но не всегда. Часто дефекты кромок шва образуются и по причине слишком длинной дуги, а также тогда, когда электрод неправильно перемещается вдоль стыка.

Поры в сварном шве

Чаще всего поры в сварном шве возникают по причине отсыревших электродов. Простыми словами в обмазке электродов присутствует влага, которая быстро испаряется при расплавлении металла, образуя в нем поры.

Поры в сварном шве

Пористость сварного шва заметно ухудшает прочность соединения, поэтому важно не допустить появления данного дефекта. Для этих целей электроды нужно подвергнуть прокалке или просушке. Также важно не забывать о правильном хранении электродов длительное время.

Шлак в сварном шве

Шлак — это неметаллические отходы, которые образуются вследствие сгорания электродного покрытия. Если шлак попал в расплавленный металл, то это тоже плохо, поскольку соединение получается непрочным и некрасивым.

Шлак в сварном шве

Нужно стараться не допускать выжигания выемок, поскольку выгнать из них шлак очень сложно. Избавиться от шлака можно различными способами, как в процессе сварки (выдуть шлак из сварочной ванны), так и на момент подготовки металла перед свариванием.

Для этого старайтесь делать достаточный зазор между заготовками, отнеситесь ответственно к подготовке сварочной канавки. Обязательно снимите всю ржавчину и окалины с металла, убедитесь в том, что выбраны нужные электроды для сварки.

Ошибки и дефекты сварки, о которых нужно знать начинающему сварщику

Кроме того, после каждого валика осуществляйте очистку шва от шлака. Для этого опытные сварщики используют специальный обрубочный молоток. Также в очистке сварного шва от шлака поможет и проволочная щётка.

Читайте также: