Коллагеновые волокна кожи это

Обновлено: 25.04.2024

Коллаген является основным компонентом, который составляет основу соединительной ткани организма: мышц, сухожилий, связок, кожи, хрящей, суставов и т.д. Это один из главных компонентов, отвечающий за ь прочность и эластичности всей соединительной ткани, в том числе и стенок кровеносных сосудов и сердца.

С возрастом выработка коллагена постепенно снижается. Примерно после 35-40 лет выработка коллагена в организме сокращается, что может вызывать проблемы (дряблость и провисание кожи, появление морщин). Кроме того, снижение выработки коллагена может привести к таким заболеваниям как: остеоартрит, боли в суставах и мышцах.

Преимущества коллагена для кожи

К основным преимуществам коллагена для кожи относятся:

  • Поддержание эластичности и упругости кожи.
  • Укрепление кожи, поддержание оптимального уровня воды, необходимого для её гидратации.
  • Цвет лица, кожа выглядит сияющей, отдохнувшей и здоровой.
  • Ускорение процесса регенерации кожи и заживление кожи в случае травм, порезов.
  • Сохранение молодости и естественного блеска волос, волосы становятся более сильными и менее подвержены ломкости.

Продукты, которые улучшают выработку коллагена в коже

Не секрет, что для того, чтобы организм получал все необходимые витамины и питательные вещества, питание должно быть разнообразным и сбалансированным. Употребление достаточного количества жидкости также влияет на выработку коллагена и гидратации кожи. Это самый простой и доступный способ поддерживать выработку коллагена.

Не существует никаких чудодейственных препаратов и средств для кожи, но есть те, которые способствуют повышению упругости кожи и позволяют ей выглядеть здоровой.

Мы составили список продуктов, которые способствуют выработке коллагена:

1. Животный белок: мясо и рыба

В белке животного происхождения (мясо, субпродукты, желатин животного происхождения) содержится большое количество коллагена.

Важно избегать полуфабрикатов.

Эксперты рекомендуют употреблять мясо красного цвета умеренно (не более одного раза в неделю).

Рыба, особенно лосось, тунец или форель с высоким содержанием омега-3 жирных кислот естественно повышает концентрацию коллагена (также являясь полезными для костей и суставов).

2. Фрукты и овощи

Фрукты и овощи красного цвета содержат коллаген: перец красный, вишня, клубника, помидоры, малина .

А фрукты богатые витамином С необходимы для производства коллагена: апельсин, киви, грейпфрут, манго, ананас и некоторых других. Например, лимон не стимулирует производство коллагена, но и действует, как антиоксидант.

3. Яйца

Яйца являются лучшей пищей для нашей кожи, ведь в них большая концентрация ценных белков и витаминов группы В, Е, аминокислот и серы).

4. Сухофрукты и орехи

Арахис, грецкие орехи, фисташки, миндаль также стимулирует выработку коллагена.

5. Молочные продукты

Молочные продукты (молоко, сыр, йогурт и т.д.) благотворно влияют на производство коллагена благодаря высокому содержанию белка.

6. Серные продукты

Нужно употреблять в пищу продукты, которые содержат серу в своём составе (чеснок, лук, сельдерей, огурцы, оливки, виноград) они тоже обеспечивают хороший уровень коллагена в организме.

7. Чай

Чай (зеленый, белый, черный или красный) является натуральным антиоксидантом, который предотвращает снижение коллагена в нашем организме.

8. Желе

Желатин в организме превращается в коллаген и это тоже ценный источник животного белка.

Масло Bio-Oil способствует улучшению эластичности вашей кожи

Масло Bio-Oil является многофункциональным средством, известном во всем мире. Оно помогает в профилактике и лечении растяжек, пятен и рубцов, и является помощником в борьбе против старения кожи. Суспензия на основе масла с добавлением экстрактов растений (розмарина, календулы, лаванды и ромашки) и витаминов А и Е, действуют как мощный антиоксидант в борьбе со свободными радикалами и помогают поддерживать эластичность и упругость кожи.

Употребляйте в пищу полезные продукты и не забывайте про ритуал красоты с использованием масла Bio-Oil утром и вечером для сохранения красоты и молодости вашей кожи.

• Основная функция коллагена состоит в обеспечении структурной опоры тканей

• Коллагены представляют собой семейство, состоящее более чем из 20 различных белков внеклеточного матрикса. Эти белки — наиболее распространенные в царстве животных

• Все коллагены организованы в тройные спирализованные «коллагеновые субъединицы», обладающие суперспиральной структурой и состоящие из трех отдельных полипептидов

• Коллагеновые субъединицы выходят из клеток и затем, во внеклеточном пространстве, собираются в более крупные фибриллы и волокна

• Мутации в коллагеновых генах вызывают множество патологических состояний, начиная от появления морщин до развития хрупкости костей и таких тяжелых заболеваний, как образование кожных волдырей

Семейство коллагенов включает более 20 белков, которые относятся к наиболее распространенным белкам клеток животных. У многоклеточных организмов коллагены существуют по крайней мере 500 млн лет. Почти все клетки животных синтезируют и секретируют по меньшей мере одну из форм коллагена.

Коллагены обеспечивают тканям структурную поддержку и существуют во множественных формах, организованных в различные структуры. Все белки семейства коллагенов характеризуются одним общим свойством: они собраны в тонкие (примерно 1,5 нм диаметром) тройные спиральные суперспирализованные структуры, состоящие из трех субъединиц коллагеновых белков, которые удерживаются вместе ковалентными и нековалентными связями.

Типы коллагеновых структур

Коллагеновые субъединицы собираются в тройные спиральные структуры, которые организуются в фибриллы или в сеть,
где они связаны между собой другими белками внеклеточного матрикса, включая коллагены, связанные с фибриллами.

Суперспирализованные структуры бывают трех типов — фибриллярные, слоистые и связанные с фибринами:

• В фибриллярных коллагенах суперспирализованные спирали организованы в фибриллы или «канаты», которые обеспечивают прочность структуры вдоль единственнной оси (такая структура напоминает прочный стальной трос, образованный проволочными пучками). Когда эти фибриллы собраны в параллельно расположенные пучки, как в сухожилиях, они обеспечивают невероятную прочность структуры, которая способна противостоять усилиям, развиваемым мышцами, закрепленными на костях.

• Слоистые коллагены представляют собой сеть, состоящую из суперспирализованных спиральных структур. Они в меньшей степени устойчивы к мышечным усилиям, но гораздо лучше противостоят растяжению в нескольких направлениях. Сеть таких структур, например, характерна для кожи.

• Третий тип коллагена, известный как «фибриллярные связки», образует суперспирализованные спиральные структуры, связывающие коллагеновые фибриллы вместе.

Независимо от организации, коллагены образуют основную каркасную структуру внеклеточного матрикса. Такие входящие во внеклеточный матрикс белки, как фибронектин и витронектин, связываются с коллагенами и вплетены в структуры, образованные коллагеновым каркасом. Один из представителей семейства коллагенов представляет собой трансмембранный белок, который участвует в формировании межклеточных контактов.

Существует примерно 20 различных типов коллагена, большая часть которых может быть сгруппирована в четыре класса. Каждая из тройных спиралеобразных структур обозначается римской цифрой (I, II, III и т. д.). Каждая коллагеновая субъединица имеет обозначение как субъединица а, а ее типу присвоен номер (а1, а2, а3 и т. д.), после которого римской цифрой обозначен тип, в котором она находится. Например, основной фибриллярный коллаген хвоста (и других тканей) крыс относится к типу I и состоит из двух копий субъединиц а1(1) и одной копии субъединицы а2 (I).

На рисунке ниже представлена структура коллагеновых волокон. Три полипептидные субъединицы параллельно обернуты вокруг друг друга и образуют суперспирализованную спиральную структуру длиной 300 нм. Для коллагенов характерна повторяющаяся последовательность аминокислот, содержащая элемент глицин-X-Y, где X и Y могут представлять собой любую аминокислоту, но обычно это пролин и гидроксипролин соответственно.

Такая последовательность способствует плотной упаковке трех субъединиц и облегчает образование суперспиральной структуры. Субъединицы длиной 300 нм скрепляются вместе посредством ковалентных связей, которые образуются между N-концевым участком одной субъединицы и С-концевым участком примыкающей к ней. Суперспирализованные спиральные структуры располагаются параллельно, образуя между собой небольшие зазоры (64-67 нм). Эти зазоры обеспечивают характерный вид (исчерченность) фибрилл, видимый в электронном микроскопе.

Группы коллагенов

Коллагеновые белки подразделяются на четыре основные группы, которые отличаются по молекулярной формуле,
характеру полимерных форм и по распределению в тканях. Некоторые группы включают коллагены нескольких типов.

Полностью собранные коллагеновые структуры (фибриллярные или сетчатые) по размерам оказываются гораздо больше, чем сами клетки; некоторые фибриллы могут достигать нескольких миллиметров длины. Таким образом, субъединицы коллагена синтезируются и секретируются в виде суперспирализованных спиральных структур, и окончательные этапы их сборки происходят вне клетки. Как показано на рисунке ниже, синтез коллагена и дальнейший его процессинг происходят на протяжении всего секреторного пути. При синтезе коллагеновые белки направляются в гранулярный эндоплазматический ретикулум (ЭПР) при участии частиц, распознающих сигнал и связанного с ними белкового аппарата.

Коллагеновые субъединицы синтезируются в виде крайне длинных полипептидов, которые называются проколлагены и содержат пропептиды, представляющие собой «хвосты», расположенные на амино- и карбоксильном концах.

После того как проколлагены попали в просвет ЭР, по мере транспорта из ЭР через аппарат Гольджи и в секреторные везикулы, они претерпевают серию модификаций. В процессе транспорта проколлагена через ЭР и аппарат Гольджи, к боковым цепям пролина и лизина, находящимся в средней части молекул проколлагена, добавляются гидроксильные группы (-ОН). При этом образуются гидроксипролин и гидроксилизин.

Эти модификации обеспечивают правильное образование водородных связей, которые скрепляют вместе три субъединицы в суперспирализованной спиральной структуре. Между амино- и карбоксиконцевыми частями пропептидов образуются дисульфидные связи, которые затем обеспечивают правильное расположение трех проколлагеновых субъединиц с образованием тройной спиральной суперспирализованной структуры. Затем спираль образуется спонтанно, в направлении от С-конца к N-концу.

Пропептиды препятствуют взаимодействию суперспирализованных спиралей друг с другом, тем самым предотвращая полимеризацию коллагена в клетке. Когда произошла секреция тройных спиралей проколлагена, ферменты, которые называются протеазы проколлагена, отщепляют пропептиды. Остающийся белок, известный под названием тропоколлагена, почти весь организован в тройную спираль и представляет собой основную структурную единицу коллагеновой фибриллы.

Фибриллы собираются просто: боковые цепи лизина в тропоколлагене модифицируются при действии фермента лизилоксидазы, образуя аллизины. Эти модифицированные лизины образуют ковалентные сшивки, которые обеспечивают полимеризацию тропоколлагенов. Лизилоксидаза представляет собой внеклеточный фермент, и эта стадия сборки фибрилл происходит только после выхода проколлагена из клетки. После сборки фибриллы могут объединяться, образуя большие пучки или волокна, характерные для фибриллярного коллагена.

Принимая во внимание всю важность коллагена в обеспечении структурной поддержки тканей, можно представить, какие тяжелые последствия для организма будет иметь нарушение процесса сборки фибрилл. Мутации в генах, кодирующих синтез коллагенов или ферментов, модифицирующих проколлаген, вызывают развитие множества генетических заболеваний, затрагивающих практически все ткани. Например, коллаген типа I представляет собой основной структурный белок костной ткани. Мутации в коллагеновых генах этого типа служат причиной незавершения остеогенеза, т. н. развития «болезни хрупких костей».

Мутации в коллагеновом гене типа IV приводят к нарушению сборки базальной ламины в большинстве эпителиальных тканей и к развитию такого кожного заболевания, как буллезный эпидермоз.

Клетки связываются с коллагеном посредством специфических рецепторов, называемых интегринами. Эти рецепторы обеспечивают возможность обратимого связывания клеток с коллагенами по мере их движения по внеклеточному матриксу. Интегриновые рецепторы также активируют пути передачи сигналов, так что связывание с коллагенами (и с другими белками внеклеточного матрикса) изменяет активность в клетке биохимических процессов и, таким образом, способствует контролю над ростом и дифференцировкой клеток.

Схематическое строение тройной спиральной структуры коллагена (наверху),
организация витой структуры в фибрилле (в середине) и фибрилл в коллагеновом волокне (внизу).
Наличие 67-нм зазора между соседними спиральными структурами обусловливает видимую в электронном микроскопе исчерченность фибрилл, составляющих волокно.
Посттрансляционная модификация и сборка субъединиц проколлагена в тройные спиральные структуры происходит при внутриклеточном перемещении по секреторному пути.
Однако сборка фибрилл происходит во внеклеточном пространстве после секреции тройных спиралей, обладающих витой структурой.
Для упрощения в тройных структурах не показаны гидроксильные группы и сахарные остатки.
Лизилоксидаза катализирует ковалентное связывание двух боковых цепей лизина с образованием аллизинов (альдегидных производных лизина),
которые затем образуют между собой альдольную связь.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Гистология дермы. Коллагеновые, эластические, ретикулярные волокна дермы

В дерме три типа волокон — коллагеновые, эластические и ретикулярные.
Коллагеновые волокна. Коллаген составляет более 98% соединительной ткани дермы и выглядит как пучки волокон, связанных друг с другом основным межуточным веществом. Наиболее грубые волокна и пучки расположены ближе к подкожной жировой клетчатке, наиболее нежные — в верхней части дермы.

В сосочковом и подсосочковом слоях дермы коллагеновые пучки располагаются без всякого порядка и взаимно не пересекаются. В нижних частях дермы пучки расположены параллельно поверхности кожи и пересекаются. Коллагеновые пучки сами по себе обладают слабой способностью к растяжению, однако их волнообразное расположение усиливает эту способность.
Между коллагеновыми пучками разбросано небольшое количество клеток — фибробластов, имеющих бледное ядро овальной или веретенообразной формы, заключенное в отчетливую ядерную мембрану.

Эластические волокна. Коллагеновые пучки тесно переплетаются с сетью эластических волокон, располагающихся в пространствах между первыми. Эластические волокна прямые или слегка волнистые. Они толще и их намного больше в нижней части дермы, где их расположение напоминает расположение коллагеновых волокон — главным образом параллельно поверхности кожи. Длина волокон достигает 200 u.

В сосочках эластические волокна направляются кверху и расщепляются на отдельные волоконца, способствующие тесной связи между эпидермисом и дермой. Эластические волокна не окрашиваются такими обычными красками как гематоксилинэозин и флоксин-метиленовая синь. Чтобы их выявить, необходимо применять избирательные окраски, например по методу Верхофа (Verhoeff). Эластические волокна ригидны, но эластичны; ригидность предохраняет кожу от чрезмерной растяжимости.
Когда кожа чрезмерно растянута, например при беременности, эластические волокна могут разрываться и дегенерировать.

гистология дермы

Ретикулярные волокна. Ретикулярные, или решетчатые, волокна («Gitterfasern») образуют третью систему волокон в коже. Они не видны при применении обычных красок, но окрашиваются серебром (краской Фута). В настоящее время считают, что ретикулярная ткань кожи представляет собой незрелый коллаген («преколлаген») или коллаген, находящийся в состоянии отдельных волоконец; коллаген же является компактной ретикулярной тканью [Маллори и Паркер (Mallorу, Parker)].

На препаратах, содержащих ретикулярные волокна (при окраске по Футу), легко заметить, что в участках, где эти волокна расположены наиболее густо, они имеют тенденцию собираться в агрегаты коллагеновых пучков. Мнение об идентичности коллагена и ретикулярной ткани основывается и на их одинаковой окрашиваемости. Исключение составляет различная окрашиваемость серебром. Разница в аргирофильных свойствах зависит от того, что ретикулярные волокна — более нежные структуры, чем коллагеновые волокна, и потому легче проницаемы для коллоидального серебра [Нажеотт и Гийон (Nageotte, Guyon)].

Ретикулярные волокна образуются, по-видимому, в результате желатинизации внеклеточного вещества, секретируемого мезодермальными клетками [Фут и Дэй (Day)]. Способностью к формированию ретикулярных волокон обладают различные типы мезодермальных клеток — ретикулоциты, гистиоциты, лимфоциты, сосудистые эндотелиальные клетки, клетки гладких и поперечнополосатых мышц, жировые клетки [Деблин (Dublin)].

Нормальная кожа содержит лишь небольшое количество ретикулярных волокон, так как вся ретикулярная ткань находится в зрелом виде, т. е. в виде коллагена. Небольшое число ретикулярных волокон обнаруживается обычно вокруг потовых желез и вокруг кровеносных сосудов. Кроме того, ретикулярные волокна находятся непосредственно под базальным слоем эпидермиса. На поперечных срезах волоса эти ретикулярные волокна расположены по типу щетки, а на горизонтальных срезах — в виде волокнистой сети (Одлэнд).
Вследствие того, что протоплазматические отростки базальных клеток проникают в эту сеть, осуществляется тесная связь между эпидермисом и дермой.

В противоположность этому при патологических состояниях кожи, сопровождающихся образованием молодых мезодермальных клеток, кожа содержит многочисленные ретикулярные волокна. Особенно многочисленны ретикулярные волокна при гранулемах, таких как туберкулез, саркоид и сифилис, а также при мезодермальных опухолях — гистиоцитоме, саркомах, лимфомах. Если, однако, мезодермальные клетки чрезвычайно незрелы (как, например, при лимфоме развивающейся из недифференцированных лимфоидных клеток— «stem cells»), они могут не обладать способностью образовывать ретикулярную ткань. Если же мезодермальные клетки очень зрелые (как, например, при некоторых фибромах), вся вновь образуемая ретикулярная ткань превращается в коллаген.

- Вернуться в оглавление раздела "Дерматология"

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

• Основная функция эластина состоит в обеспечении эластических свойств тканей

• Мономеры эластина (известные как тропоэластиновые субъединицы) организованы в волокна, настолько прочные и устойчивые, что функционируют в течение всей жизни организмов

• Прочность этих волокон обусловлена образованием ковалентных сшивок между боковыми цепями лизина, находящегося в соседних мономерах эластина

• Эластичность волокон связана с наличием гидрофобных областей, которые при приложении силы растягиваются, а при снятии нагрузки спонтанно сокращаются

• Сборка волокон тропоэластина происходит во внеклеточном пространстве и находится под контролем трехступенчатого процесса

• Мутации в гене эластина являются причиной развития разнообразных патологических состояний, начиная от образования морщин на коже и заканчивая ранней детской смертностью

Как следует из названия, эластин представляет собой белок внеклеточного матрикса, главным образом, обеспечивающий эластические свойства тканей. Благодаря эластину, ткань может растягиваться и возвращаться к исходному размеру, дополнительно не расходуя энергию. Эластина особенного много в таких тканях, как кровеносные сосуды, кожа и легкие, где эластичность является критическим фактором, обеспечивающим правильное функционирование органа.

Например, эластичность кровеносных сосудов играет важную роль в поддержании надлежащего уровня кровяного давления, а эластичность легких с каждым вдохом обеспечивает их заполнение воздухом и последующее опорожнение.

Строение эластиновых волокон

Схематическое строение релаксированных и растянутых эластиновых волокон.
Отметьте выраженные различия в структуре эластиновых субъединиц в каждом случае.
Детали строения субъединиц пока неизвестны.

Эластин синтезируется и секретируется фибробластами, представляющими собой один из наиболее распространенных типов клеток у животных, а также клетками гладкой мускулатуры. Эти клетки также секретируют коллагены, которые противостоят растяжению. В результате внеклеточный матрикс каждого органа характеризуется комбинацией свойств эластичности и прочности. Изменяя соотношение эластина и коллагена во внеклеточном матриксе, клетки могут регулировать эластические свойства органов.

Как следует из рисунка ниже, эластин организован в волокна, которые состоят из основной области эластиновых белков, окруженной оболочкой микрофибриллярных белков диаметром 10-12 нм. Основным компонентом этой оболочки является гликопротеин, связанный с микрофибриллами, который ассоциирован с мономером эластина и способствует его включению в более крупные эластиновые волокна. Эти волокна настолько прочны и стабильны, что функционируют на протяжении всей жизни организмов (т. е. не деградируя и не замещаясь). Присутствующий в этих волокнах эластин является наименее растворимым белком позвоночных.

Каким образом, эластин, обладая высокой прочностью и стабильностью, тем не менее, проявляет высокую эластичность? Ответ лежит в особенностях его структуры. Ген эластина содержит 36 экзонов, которые кодируют две совершенно разных последовательности аминокислот: некоторые из них проявляют гидрофильные свойства и содержат много остатков лизина, в то время, как другие обогащены гидрофобными аминокислотами, особенно глицином, пролином, аланином и валином.

Гидрофобные последовательности вкраплены среди гидрофильных областей, что обусловливает существование большого по размеру белка, обладающего двумя различными свойствами. Прочность эластиновых волокон, в основном определяется ковалентными связями, возникающими между боковыми цепями лизина в примыкающих друг к другу белках, подобно тому как это имеет место в коллагене. Наоборот, гидрофобные области обеспечивают эластичность за счет сворачивания молекулы в спираль в нерастянутом состоянии, и ее растяжения при приложении силы. При снятии напряжения эти области снова спонтанно сворачиваются. Даже после многолетних исследований биологи не пришли к заключению о точной конформации эластиновых белков в волокнах.

Сборка таких нерастворимых белков ставит перед клеткой особые проблемы. Если эти белки, до момента их секреции из клетки, спонтанно агрегируют, они могут повлиять на секрецию других белков, «закупоривая» секреторные пути, а также вызывать разрыв органелл или плазматической мембраны. Клетки синтезируют и секретируют эластиновые белки в виде мономеров, однако собирают волокна только во внеклеточном пространстве, после того как белки вышли из клетки, не нарушив ее внутреннюю среду.

Как иллюстрирует рисунок ниже, образование эластина включает три основных этапа:

• Вскоре после образования эластиновых мономеров (известных под названием тропоэластина) они связываются в ЭПР с белком-шапероном мол. массы 67 кДа. В течение всего процесса секреции этот шаперон остается связанным с тропоэластином и предотвращает агрегацию эластина в клетке.

• После завершения секреции комплекс с помощью шаперона удерживается на поверхности клетки до тех пор, пока он не вступит в контакт с оболочкой эластинового волокна. После этого вновь секрети-рованный тропоэластин встраивается в эластиновое волокно с участием сахарных компонентов его оболочки, которые замещают шапероны.

• Большая часть боковых цепей лизина, присутствующего в мономере тропоэластина, дезаминируется при действии фермента лизилоксидазы. При этом образуются аллизины, которые ковалентно связываются с аллизинами или немодифицированными лизинами, присутствующими в других эластиновых белках волокна. Название зрелый эластин используют для обозначения эластиновых белков, которые были модифицированы лизилоксидазой и образовали полимер.

Таким образом, трехэтапный метод обеспечивает полную сборку эластина только в тех местах клетки, где это является необходимым.

Как можно ожидать, изменения, наступающие в процессе сборки или функционировании эластина и эластиновых волокон, могут иметь серьезные последствия для клетки. Дряблость кожи, заболевание, которое выражается в утрате эластиновых волокон в коже и соединительной ткани, по тяжести проявления может варьировать от незначительного разрушения волокон и возникновения морщин до практически полной утраты волокон. У больных, в клетках которых мало эластиновых волокон или они вообще отсутствуют, не поддерживается целостность тканей, и они умирают в раннем детстве.

У больных с синдромом Вильямса образуются укороченные формы эластина, в которых отсутствуют некоторые домены связывания, и нарушен процесс организации в волокна. У этих больных развивается сильное сужение крупных артерий, по-видимому, обусловленное аномальным ростом вокруг артерий клеток гладкой мускулатуры. Это служит компенсаторной реакцией в ответ на утрату эластиновых волокон, обычно присутствующих в стенке артерий.

Сборка эластиновых волокон

Во время транспорта к клеточной поверхности эластиновые мономеры (тропоэластины) связаны с шаперонами.
Связывание шаперонов с оболочкой микроволокна приводит к высвобождению мономеров эластина.
Полимеризация катализируется поперечными сшивками тропоэластинов, которые образуются при действии лизилоксидазы.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Коллаген — один из белков нашей кожи, его ещё называют «белком молодости». Всё потому, что он в тандеме с эластином обеспечивает упругость и эластичность кожи, выступая в роли «пружинистого матраса».

После 45 лет организм снижает выработку коллагена практически до нуля. Остаток жизни человек живёт на запасах, сделанных до этого возраста.

Существует более 20 видов коллагена, но для хорошего состояния кожи наиболее важны I и III типы.



Кто производит коллаген и кто его разрушает?

Коллаген в коже синтезируют специальные клетки — фибробласты, разрушается же он из-за воздействия ферментов. Эти два процесса постоянны, но с возрастом (после 35 лет) разрушение начинает преобладать над синтезом: упругие волокна разрушаются, становятся жёсткими и хрупкими, в коже накапливается поврежденный, фрагментированный коллаген.

Это приводит к тому что кожа теряет прочность и упругость, становится дряблой, иссыхает из-за потери способности белка удерживать влагу, формируются морщины.

Молодая кожа (до 30 лет) синтезирует около 6 кг коллагена в год, после 35 лет этот показатель снижается до 3 кг, а после продолжает уменьшаться год от года.

Как вернуть коллаген?

Первое, что можно услышать — советы по оптимизации режима питания. Считается, что рацион нужно разнообразить:

  • витаминами С, А, D;
  • пептидами (строительныйматериал коллагена);
  • ретиноидами (стимуляторы работыфибробластов).

Но часто упоминают и искусственный коллаген: он бывает животного (аллергенен и не применяется), растительного (также может вызвать аллергию и практически ничего общего с оригинальным белком не имеет) и морского происхождения.


Искусственный коллаген в кремах, масках и БАДах

Проблема искусственного коллагена для наружного применения (в составе кремов, гелей, масок) заключается в том, что крупная молекула белка не проникает через роговой слой кожи, а лишь временно заполняет неровности и микротрещины на ее поверхности.

Видимая эффективность препаратов объясняется увлажняющим эффектом. Он возникает в результате образования пленки на поверхности кожи, которая затрудняет испарение воды из верхних слоёв эпидермиса.

Широко рекламируются и пищевые добавки в порошках и пилюлях с искусственным коллагеном, однако на состояние кожи эти препараты практически не влияют, поскольку в готовом виде белок с трудом усваивается из пищеварительного тракта.

Коллаген I и III типа ни в виде пилюль, ни в виде кремов до глубоких слоев дермы не доходит. Как же вернуть коже упругость и молодость?


Важно понимать, что «готовый» коллаген не сильно поможет обрести коже упругость и плотность, потому что вещество родного «человеческого» типа ещё не синтезировали.

В кремах и БАДах применяется «морской» коллаген, который организму ещё нужно встроить в структуры кожи; этот процесс происходит за счет разрушения самого белка, разделения на составные аминокислоты и гидроксипролины (не запоминайте эти слова!). Какой смысл вводить «готовый» коллаген в кожу, чтобы он там разрушился?

Эффективного омоложения кожи можно добиться двумя способами:

  1. доставка в дерму веществ,стимулирующих естественную выработку коллагена, причем желательно нетолько I и III типов (также важны, к примеру, и IV, и V, и VII типы);
  2. стимулирование фибробластов,чтобы не ленились после 30 лет и продолжали выработку коллагена как в 18.

Доставить в кожу строительный материал можно двумя путями: добавив нужные элементы в рацион питания или выполнив инъекционную процедуру (введя нужные элементы с помощью уколов). Первый путь занимает больше времени и имеет накопительный эффект, результаты второго можно оценить практически сразу после процедуры.

Для того, чтобы ваша кожа была здоровой и молодой, в рационе обязательно должны присутствовать:

  • витамин С в достаточномколичестве;
  • медь (печень трески, шпинат, какао-порошок,печень говяжья);
  • пиридоксин (витамин В6):фисташки, чеснок, фасоль;
  • цинк (устрицы, пшеничныеотруби, угорь, кунжут);
  • серосодержащие соединения -сера, глутамин (кролик, куриная грудка, индейка, яичный порошок);
  • селен (фисташки, грецкие орехи,фасоль и чечевица, брокколи, тунец);
  • кремний (рис нешлифованный,овёс, просо, ячмень).

Отдельно отметим те соединения и вещества, которые стимулируют работу фибробластов:

  • витамин А (рыбий жир, печеньговяжья, морковь);
  • витамин D (рыбий жир, печень трески, жирные сорта рыбы,морепродукты);
  • пептиды.

Если вам удастся составить диету из всех перечисленных продуктов с незначительными отклонениями, через 6-9 месяцев состояние кожи заметно улучшится!

Отличия коллагена I и III типа

Мы выяснили, что всевозможные БАДы с коллагеном – бесполезны для кожи. Эффективны только натуральные продукты, хотя и от помощи косметологов отказываться не стоит.

Итак, чем же могут помочь наши специалисты?

Для начала отметим, что косметологи видят значительные отличия коллагена I типа от коллагена III типа:

  • коллаген I типа (фиброзный) преобладает в составе кожи (около 60%), имеет неровную и плотную структуру;
  • коллаген III типа (ретикулярный) является самым желанным, поскольку отвечает за молодость кожи, его волокна ровные, стройные, с великолепной упругостью.

При повреждении белок III типа превращается в I тип. К примеру, наши шрамы и рубцы полностью состоят из коллагена I типа.


Стимулируем выработку коллагена

Задача косметолога – стимулировать образование упругих волокон именно Ш типа, хотя чем больше лет пациенту, тем труднее «разбудить» и «простимулировать» фибробласты. Существуют исследования, доказывающие невозможность синтеза «коллагена молодости» в пожилом возрасте после 65 лет. Это значит, что запасать «молодой» коллаген нужно заранее!

    Процедура мезотерапии.Серия уколов тонкой иглой или канюлей, в процессе которых в кожу вводятнеобходимые вещества для синтеза коллагена, а также пептиды саминокислотами для раздражения и стимулирования фибробластов. Эффект такойже, как от 3-4 месяцев усиленной «коллагеностимулирующей» диеты!

На всё лицо требуется не меньше 2 мл препарата (а лучше 3-4)! Это тотсамый случай, когда желание сэкономить может привести к отсутствиюрезультата и разочарованию.

Распорядок дня, сон и гормоны

Синтез коллагена невозможен без поддержки гормонов. Так, на процесс неоколлагенеза влияют половые гормоны, рецепторы к которым обнаружены в фибробластах. Производство «белка молодости» зависит от процентного содержания эстрогенов в организме, поэтому у женщин в менопаузе, когда количество женских половых гормонов резко уменьшается, происходят и негативные изменения в кожном покрове.
Но главным гормоном, ответственным за синтез коллагена, считается соматотропин. Он примечателен суточными ритмами секреции. Наиболее высокий и предсказуемый пик выработки соматотропина наступает в ночное время, обычно через 2 часа после засыпания. Однако ряд исследований показывают пониженные темпы секреции гормона у людей, которые ложатся спать после часа ночи (так называемые «совы»). Поэтому принято считать, что самыми благоприятными часами для восстановления красоты кожи является промежуток между 23 часами и 1 часом ночи.

Зачем вам это знание?

После процедуры биостимуляции Radiesse или мезотерапии, хотя бы в течении 2-3 месяцев после неё постарайтесь ложиться спать не позже 21-22 часов ночи. В сочетании с «колагеностимулирующей диетой» такой подход позволит добиться впечатляющих результатов и сохранить эффект омоложения на долгий срок.

Читайте также: