Как чувствует кожа прикосновение

Обновлено: 15.04.2024

Кожная чувствительность. Методы оценки кожной чувствительности

Во внутриутробный период и непосредственно после рождения ребенка чувствительность кожи имеет важное значение для анализа изменений, происходящих во внешней среде. Восприятие контактных раздражений осуществляется главным образом кожей, которая чувствительна к болевым, тактильным и температурным воздействиям.

Болевая чувствительность на механические раздражения у новорожденных развита слабо, особенно у недоношенных, но в течение первых недель жизни она заметно возрастает. У новорожденных порог раздражения для боли значительно выше, чем у детей более старшего возраста. Доношенные новорожденные уже в 1—2-й день после рождения отвечают на укол иглой средней силы отчетливой болевой реакцией в виде локального движения, крика или сморщивания лица. Область лица у новорожденных и грудных детей особенно чувствительна к болевым раздражениям. У недоношенных новорожденных даже сильные уколы иглой могут не вызвать реакции неудовольствия. Постепенно, с возрастом, чувствительность к болевым раздражениям возрастает, и ответная реакция носит генерализованный характер. После 2 мес жизни общая реакция на болевое раздражение уменьшается, а локальные реакции становятся более отчетливыми. Ребенок стремится избавиться от раздражителя, отодвигая раздражаемый участок, совершает движение конечностями или сильным плачем сигнализирует окружающим. К концу 1-го года жизни он может локализовать место раздражения, болевая чувствительность в этот период уже хорошо развита.

Болевая чувствительность к электрическому току у детей раннего возраста ниже, чем у взрослых и детей старшего возраста. Пониженная чувствительность к раздражению электрическим током сохраняется почти до 6-летнего возраста.

Функциональное развитие тактильной чувствительности опережает развитие остальных органов чувств. К концу 2-го месяца внутриутробной жизни устанавливаются первые реакции на тактильное раздражение. В течение последующих месяцев они завершают свое развитие и у плода 7 мес сходны с реакциями у новорожденного ребенка.

кожная чувствительность

Тактильная чувствительность у детей раннего возраста выражена довольно хорошо, но, как и у взрослого, разные части тела неодинаково чувствительны к прикосновению. Наиболее чувствительны лицо, кожа рук, стоп и менее — кожа предплечья, лопаток, груди, живота, спины, бедер и голеней.

В первые 2 мес у детей отсутствует реакция на щекотание: она появляется обычно после 2 мес и с 9 мес имеется у всех детей. Вначале она вызывается с кожи подмышечной впадины, затем — со стоп и шеи в виде неудовольствия, плача, защитных движений, а позднее в форме положительной эмоциональной реакции, улыбки, смеха.

Температурная чувствительность у новорожденного хорошо развита. Он рзагирует как на понижение, так и на повышение температуры. Наиболее выражена ответная реакция при разнице между температурой раздражителя и температурой гела 6—7°. При этом новорожденные сильнее реагируют на снижение температуры, чем на ее повышение.

Болевую чувствительность у новорожденных и грудных детей проверяют, нанося раздражение иглой или электрическим током на определенные участки тела. Ответная реакция в виде отдергивания конечностей или общего беспокойства ребенка свидетельствует о сохранности болевой чувствительности.

Тактильную чувствительность исследуют, нанося на кожу раздражение мягким предметом (ватой, кисточкой). В ответ на него возникают общая и местная двигательные реакции. Так, при поглаживании кончика носа появляются сосательные движения, прикосновение к средней части спинки носа приводит к прищуриванию глаз, поднятию крыльев носа и углов рта; раздражение корня языка и нёба вызывает рвотные движения; раздражение круговой мышцы рта вызывает вытягивание губ (хоботковый рефлекс), а прикосновение к векам, конъюнктиве, ресницам — смыкание глаз. Поглаживание внутренней стороны согнутого мизинца приводит к его разгибанию. При продолжающемся раздражении разгибаются и остальные пальцы (кроме большого). Раздражение внутренней поверхности ладони вызывает хватательный рефлекс.

Температурную чувствительность у грудных детей можно исследовать, раздражая различные участки тела пробирками с холодной и теплой водой. На эти раздражения дети отвечают общим беспокойством или местными двигательными реакциями. Слабые температурные раздражения вызывают сокращение мышц лица и движения ног. Более сильные приводят к генерализованной двигательной реакции, сморщиванию лица, крику.

Все вышесказанное свидетельствует о том, что в раннем детском возрасте можно получить только общие представления о расстройстве чувствительности. Определить границы и тип чувствительных расстройств практически невозможно. Поэтому исследование чувствительности у детей раннего возраста не имеет такого значения, как у взрослых.


Не секрет, что самым большим органом человеческого тела является его кожа. Помимо защиты тела от внешних раздражителей, кожа выполняет еще и функцию датчика, собирающего информацию, наряду с глазами, ушами, языком и носом. Информация, получаемая кожей, позволяет человеку оценивать окружающую среду, лучше понимать ситуацию, в которой он находится и действовать в соответствии с ней. Несмотря на огромную важность тактильной информации, о том как именно все работает мы пока знаем не особо много. Посему ученые из Калифорнийского университета (США) решили рассмотреть кожу человека под математическим углом, дабы понять механизм возникновения и передачи тактильных ощущений. Что происходит, когда мы берем что-то в руки, как наша кожа обрабатывает получаемую информацию, и как данное исследование применить на практике? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.

Основа исследования

У взрослого человека площадь его кожи может достигать 2.3 м2, что делает ее самым большим органом. Однако габариты ничто, если за ними нет никакого функционала. Кожа выполняет достаточно много функций: защитная, дыхательная, экскреторная, терморегуляторная, иммунная, метаболическая и т.д. Другими словами, пытаясь оценивать разные органы по их важности, ставить кожу на последнее место было бы ошибочно.

Самой же загадочной функцией кожи является сбор информации, т.е. формирование осязания — одного из видов чувств человека. Такова температура в комнате, шершавые или гладкие обои, насколько мягкое кресло — все эти и многие другие данные собираются именно кожей.

Невероятная чувствительность кожи заключается в наличии колоссального числа нервных окончаний, т.е. рецепторов. Все они отличаются друг от друга по форме и строению, поскольку выполняют разные задачи (одни собирают информацию про фактуру объекта, другие — про температуру, например).

Рецепторы кожи можно разделить на два основных типа: свободные нервные окончания и несвободные нервные окончания. Первые состоят исключительно из конечных ветвлений осевого цилиндра и располагаются в эпителии. Эти рецепторы собирают данные о температуре (терморецепторы), давлении (механорецепторы) и болевых ощущениях (ноцицепторы).


Категоризация несвободных нервных окончаний куда более обширная:

  • тельца Пачини — рецепторы давления в подкожно-жировой клетчатке;
  • тельца Мейснера — рецепторы давления в дерме;
  • тельца Меркеля — рецепторы давления в глубоких слоях эпидермиса;
  • тельца Руффини — рецепторы растяжения, реагирующие на тепло;
  • колбы Краузе — рецепторы в надсосочковом слое дермы (якобы реагируют на холод, но это под вопросом);
  • рецепторы волосяных фолликулов — механорецепторы, которые реагируют на изменение положения волоса.

Это лишь краткий перечень, без глубокого рассмотрения рецепторов, их функций и строения, но и этого достаточно, чтобы понять всю сложность кожи как органа чувств.

Сами исследователи трактуют осязание как кодирование механических сигналов, собранных кожей и подкожными тканями, в нейронные сигналы. Нейронные ответы на тактильные раздражители часто связаны с механическими воздействиями, возникающими из небольших участков кожи, однако есть свидетельства о том, что динамическое прикосновение вызывает механические волны в тактильном диапазоне частот, которые распространяются по всей руке, с переходными возбуждениями, затухающими в течение 30 мс. Таким образом, динамические тактильные воздействия могут стимулировать широкое распространение афферентации*.

Было обнаружено, что эти волны, вызванные прикосновением, способствуют тонкому восприятию и могут использоваться для определения характеристик объекта, к которому дотронулись, области контакта объекта с рукой и дальнейших действий. Также есть данные, что рецептивные поля нейронов в соматосенсорных областях коры мозга охватывают большие участки рук и нескольких пальцев.

Большая площадь контакта на ранних этапах обработки сигналов побуждает корковые нейроны отвечать на входные сигналы, которые доставляются обратно в область контакта.

Таким образом, соматосенсорная обработка может зависеть от информации, переносимой механическими волнами, которые распространяются в тканях в отдаленные участки, удаленные от мест непосредственного механического контакта.

Ученые считают, если перенос механических волн в руке способствует эффективному кодированию соматосенсорной информации, то должна быть возможность описать тактильные стимулы в малых участках посредством информативных параметров. Другими словами преобразовать ощущение прикосновения в цифры.

В своем труде ученые показывают, как механические волны в руке производят эффективное кодирование тактильных входных данных. Проведя опыты с использованием высокоточных датчиков, ученые смогли создать своего рода словарик пространственно-временных сигналов, которые в совокупности позволяют классифицировать входящую информацию с точностью более 95%. То есть им удалось создать карту, показывающую где и какие области кожи руки активируются при контакте с тем или иным объектом.

Результаты исследования

Моделирование тактильной информации ученые изобразили в виде матричного разложения. Оценка кодирования была выполнена посредством собранной в ходе опытов базы данных тактильных стимулов для всей кисти, включающую пространственно-временные изменения кожи a(x, t). На руку добровольца были прикреплены специальные датчики в 30 участках (х). В ходе эксперимента было выполнено 13 жестов и 4600 взаимодействий с различными объектами.



Изображение №1

Каждый из стимулов wi(x, t), внесенный в набор данных, имел собственное время активации hi(t), которое также было учтено в модели для получения более точных «тактильных базовых паттернов» (2А), которые в совокупности кодируют все возникающие стимулы и передающиеся сигналы.



Изображение №2

Эти базисные паттерны (далее базисы) также могут быть интерпретированы как набор фильтров анализа, которые извлекают информацию из внешних стимулов с помощью различных дополнительных паттернов пространственно-временной интеграции механических сигналов в руке. По словам ученых, эти фильтры можно сравнить с функциями спектрально-временной настройки в слуховой обработке или с фильтрами пространственно-временного рецептивного поля при работе сетчатки.

Суммируя, учеными была создана математическая модель, в которой сигналы, ощущаемые по всей руке, были представлены в виде небольшого числа упрощенных паттернов. Данная методика позволила получить основные волновые паттерны — вибрации кожи по всей кисти, которые участвуют в сборе и передаче тактильной информации.

Несмотря на то, что в анализе не учитывались условия возникновения сигналов, тактильные базисы напоминали сенсорную функцию кисти (2А и 2В). Большинство из них первоначально были локализованы на дистальных концах одного из пальцев (наиболее плотно иннервируемые области кисти). Скорость движения сигналов составляла порядка 1-10 м/с, а затухание сигнала наблюдалось спустя 10-30 мс после его возникновения. Другие тактильные базисы эволюционировали от дистальной области отдельных пальцев до диффузных областей поверхности кисти (2А). В аспекте частоты, пара базисов демонстрировала схожее пространственное расположение, но разные частотные характеристики. К примеру, есть пара базисов, локализованных в пределах одного пальца, но имеющих разные фильтрационные свойства (относительно передаваемых сигналов): нижний диапазон от 20 до 80 Гц (2В, базис 2) или верхний диапазон от 80 до 160 Гц (2B, базис 6).



Изображение №3

Ученые считают, что пространственно-временные тактильные базисы связаны с определенным пальцем, т.е. имеют свою рабочую зону, так сказать. Например, 45% из 4600 проанализированных тактильных раздражителей были вызваны жестами, когда с объектом контактировал только один палец. Проведя повторный анализ, исключающий тактильные сигналы, создаваемые одним лишь пальцем, была обнаружена такая же тенденция.

Пространство возможных тактильных раздражителей ограничено механикой и продолжительностью контакта (3А).

Далее ученые решили проверить, сколько базисов должно быть задействовано для определения источника сигнала. Как оказалось, если использовать не менее 7, то точность определения составит 90%, а если 12, то 95%. Тем не менее, не все стимулы требуют активации столь большого числа базисов для повышения точности. Логика достаточно прямолинейна: когда в жесте задействовано несколько пальцев, то активируются несколько базисов; если же в жесте задействован лишь один палец, то и базисов будет один, максимум два. При этом сами базисы также варьировались в зависимости от жестов. То есть, разные жесты, хоть в них и задействованы одинаковые пальцы, будут активировать разные базисы.

Модель также показала, что достаточно пяти базисов для максимизации точности (80%), с которой стимулы от одного участника опытов могли быть классифицированы с использованием данных от других участников (3C). Эти пять базисов были практически универсальны среди всех участников и соответствовали пяти пальцам кисти (3B).

Совокупность вышеописанных наблюдений говорит о том, что сама эластичность кожи играет важную роль в сборе и передаче информации, поскольку за счет нее увеличивается площадь контакта с объектом. Кроме того, волны сигналов, распространяющиеся по определенному паттерну, позволяют классифицировать полученную информацию, что также способствует ускорению ее обработки непосредственно мозгом.

Подобные механизмы обработки сигналов можно сравнить с работой среднего уха, которое распространяя звуки с различным частотным содержанием на разные сенсорные рецепторы в ухе, помогает кодированию звуков слуховой системой.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог

Данное исследование показало нам, что кожа является намного более сложной системой, чем считалось ранее. Если раньше процесс передачи сигналов можно было описать линейно (прикосновение — возникновение сигнала — передача сигнала в мозг), то сейчас этот процесс скорее похож на волновую активность. Сигналы, получаемые от объектов взаимодействия с кожей, распространяются волнами по нервным окончаниям кожи в зависимости от зоны контакта, его продолжительности и характера поверхности. Другими словами, в сборе информации про объект контакта участвуют не только рецепторы в непосредственно месте контакта, но и рецепторы вокруг этой зоны.

Исследователи считают, что в этом сложном процессе не последнюю роль играет эластичность кожи, позволяющая увеличить площадь контакта с точки зрения распространения сигналов, а не с точки зрения непосредственно самого контакта.

По мнению ученых, их труд позволит не только лучше понять работу мозга и нервной системы человека, но и пригодится в разработке новых протезов и даже роботов, способных тактильно более точно собирать информацию об окружающей среде.


Для создания протеза может потребоваться множество сложных запчастей и лабораторный комплекс или конструктор LEGO и креативный подход.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! :)

Немного рекламы :)

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Соматовисцеральная система перерабатывает сенсорную информацию нескольких модальностей, получая ее от кожи, мышц, суставов, внутренних органов и кровеносных сосудов. Она содержит разные типы рецепторов: механорецепторы, терморецепторы, хеморецепторы, осморецепторы, но-цицепторы. Поступающая информация передается по афферентным волокнам в составе чувствительных и смешанных нервов, перерабатывается раздельными проводящими путями и переключательными ядрами, а затем доставляется в соматосенсорную кору, занимающую постцентральные извилины мозга и организованную топически.

Тактильная чувствительность

Часть соматовисцеральной системы, обеспечивающая чувство осязания, включает несколько разновидностей механорецепторов кожи, представленных свободными нервными окончаниями либо инкапсулированными, т. е. заключенными в капсулу из соединительной ткани или видоизмененных клеток эпидермиса (рис. 17.4). Свободные нервные окончания иннервируют волосяные фолликулы пушковых волос, покрывающих большую часть тела человека, а также грубых волос, растущих на голове, в подмышечных впадинах, на лобке, а у мужчин еще и на лице. Свободные нервные окончания волосяных фолликулов являются механоре-цепторами и возбуждаются при смещении волос или их подергивании. Другая разновидность свободных нервных окончаний имеется в эпидермисе и в сосочковом слое дермы, большинство из них являются ноцицепторами или терморецепторами, но некоторые принадлежат к механорецепторам, которые специфически реагируют на слабое околопороговое раздражение. Предполагается, что при раздражении этой разновидности рецепторов возникают ощущения щекотки и зуда.

Соматовисцеральная сенсорная система. Тактильная чувствительность. Тельца Пачини, Мейсснера, Руффини.

Рис. 17.4. Схема распределения механорецепторов в коже человека. Свободные нервные окончания имеют высокий порог раздражения и слабо реагируют на изменение интенсивности стимула. Быстро адаптирующиеся рецепторы (тельца Пачини, рецепторы волосяных фолликулов) служат датчиками скорости действующих стимулов, а медленно адаптирующиеся рецепторы (диски Меркеля, тельца Руффини) являются датчиками интенсивности действующего раздражителя. Наличие нескольких разновидностей рецепторов позволяет передавать афферентные сигналы о разных свойствах одного и того же раздражителя.

Среди инкапсулированных окончаний различают тельца Пачини, Мейсснера, Руффини, диски Меркеля, тактильные тельца Пинкуса—Игго, колбы Краузе. В зависимости от строения и формы капсулы нервные окончания подвержены наиболее сильному воздействию либо в результате давления действующим перпендикулярно раздражителем, либо вследствие бокового смещения капсулы, которая играет роль механического преобразователя энергии внешних стимулов. Большинство инкапсулированных рецепторов содержится в лишенной волос коже пальцев рук и ног, ладоней и подошв, лица, губ, языка, сосков и половых органов, где они распределены с различной плотностью и на разной глубине. Тельца Пачини имеются также в сухожилиях, связках и брыжейке.

Механорецепторы кожи различаются по скорости адаптации к действующему раздражителю. Быстроадаптирующиеся (фазные) рецепторы возбуждаются только в момент смещения кожи и волос и служат датчиками скорости воздействия стимула. Это свойство присуще тельцам Мейснера, рецепторам волосяных фолликулов и особенно тельцам Пачини, способным реагировать на изменения скорости продолжающего свое действие стимула. Медленно адаптирующиеся (тонические) рецепторы не прекращают генерировать потенциалы действия при продолжительном действии раздражителя, если он оказывает давление на кожу: такие рецепторы служат датчиками интенсивности действующего стимула (тельца Руффини, диски Меркеля).

Тельца Пачини, Мейсснера, Руффини. Диски Меркеля. Тактильные тельца Пинкуса—Игго. Колбы Краузе.

Таблица 17.1. Пространственный двухточечный порог в разных участках тела

Площадь рецептивных полей сенсорных нейронов, иннервирующих тельца Мейснера и диски Меркеля, составляет в среднем около 12 мм2, а у нейронов с окончаниями в виде телец Пачини и Руффини она на порядок больше. Рецептивные поля различающихся своими рецепторами сенсорных нейронов перекрываются, поэтому при действии на кожу комплекса стимулов одновременно возбуждаются разные виды рецепторов, что позволяет ощущать все динамические и статические свойства такого комплекса. Обработка и анализ информации сигналов от различных рецепторов происходит на высших уровнях сенсорной системы, формирующих комплексное восприятие действующих на поверхность тела стимулов. Плотность меха-норецепторов в разных участках кожи не одинакова, чем определяются разные показатели пространственного дифференциального порога, т. е. наименьшего расстояния между двумя точками, раздражение каждой из которых ощущается раздельно (табл. 17.1). Приведенные в таблице данные не следует считать эталоном, поскольку дифференциальная чувствительность различается у разных людей.

Инкапсулированные рецепторы иннервируются миелинизированными волокнами первичных сенсорных нейронов, которые проводят нервные импульсы в ЦНС со скоростью около 30—70 м/с. Немиелинизированные волокна передают потенциалы действия от свободных нервных окончаний со значительно меньшей скоростью — около 1 м/с, поэтому ощущение действующего на них стимула возникает относительно позже. Центральные отростки первичных сенсорных нейронов входят в спинной мозг в составе задних корешков и разделяются в задних рогах спинного мозга на коллатерали. Восходящие коллатерали достигают переключательных ядер заднего столба продолговатого мозга, откуда специфическая информация передается на противоположную сторону мозга по лемнисковому пути, поступает к проекционным ядрам таламуса, а затем в соматосенсорную кору, с участием которой формируется чувство осязания.

Патологическое восприятие тактильных раздражений. Патологические ощущения в теле.

Нормальное восприятие тактильных раздражений на половине тела может быть нарушено. В основе этого явления лежит поражение центральных структур:
• При синдроме игнорирования половины пространства пациент может «не замечать» прикосновений к пораженной половине тела. При изолированном тактильном раздражении пораженных конечностей они воспринимаются пациентом, однако при одновременном прикосновении к аналогичным точкам на обеих сторонах на пораженной стороне он их не ощущает. Это служит признаком поражения теменной доли и, как правило, сопровождается другими признаками синдрома игнорирования (зрительное игнорирование).

• При астереогнозии тактильная чувствительность руки сохранена, но при ощупывании предмета с закрытыми глазами пациент не может его идентифицировать. В основе этого нарушения в большинстве случаев лежит поражение теменной доли противоположного полушария (см. главы 1 и 9). Однако нарушение функции шейного отдела спинного мозга также может вызывать астереогноз.

• При аллохории раздражение какого-либо участка кожи постоянно ощущается не только в этой точке, но и на симметричном участке на противоположной половине тела или на той же, но в удалении от места раздражения. Этот феномен был описан при спинной сухотке, но иногда наблюдается и у здоровых лиц. В последнем случае он не имеет клинического значения.

патология в теле

Патологические ощущения в какой-либо части тела

Подобные явления могут быть обусловлены очаговым поражением таламуса или спиноталамических путей. Парестезии при этом не имеют четких границ и носят в большинстве случаев жгучий характер. Особенно характерны парестезии кисти и угла рта (хейрооральный синдром) при поражении теменной доли, таламуса или развиваюшиеся остро при кровоизлиянии в заднебоковые отделы покрышки моста. Они могут быть и двусторонними при кровоизлиянии в области медиальной петли.

Ишемическое поражение области коркового представительства чувствительности или таламокорковых афферентных путей может вызывать длительно сохраняющиеся парестезии в ограниченных регионах тела, особенно часто в области лица или кисти. Они развиваются как при транзиторных ишемических атаках, так и при ассоциированной мигрени (в том числе и без головной боли, «мигрень без головной боли»).

Эти феномены следует отличать от гораздо более кратковременных приступов фокальной сенсорной эпилепсии, которые появляются в виде сенсорных джексоновских припадков с быстрым распространением парестезии на другие части тела.

Более частой причиной подобных локализованных парестезии служит поражение периферических чувствительных аксонов или спинальных ганглиев. Нам достаточно трудно было определить, какие из этих ощущений должны быть описаны в данной главе и какие (в качестве болевых синдромов). Можно предложить следующую классификацию, основанную на локализации поражений:

• В области лица невропатия тройничного нерва может быть признаком локального поражения области ядер или корешков тройничного нерва, а также системных заболеваний, таких как саркоидоз или системный склероз. Симметричные парестезии мышц лица возможны при поражении шейных межпозвонковых дисков, отравлении растворителями и при базилярной мигрени.

• Жгучие парестезии в конечностях, прежде всего в кистях и стопах, наблюдаются при многих полиневропатиях. Кроме того, они наблюдаются при упоминавшейся выше диффузной ангиокератоме Фабри (церамидтригексозидоз). При этом заболевании, наследуемом по Х-сцепленному типу, отсутствует лизосомальный фермент альфа-галактозидаза А. Вызванное этим накопление гликосфинголипидов в клетках различных органов становится уже в первые два десятилетия жизни причиной мучительных приступов боли в конечностях (наряду с диффузной постоянной болью и другими симптомами: нарушением секреции потовых желез, коликами в животе, сердечными аритмиями и кардиомиопатией).

Основным диагностическим признаком служат ангиокератомы от темно-красного до коричнево-голубоватого цвета в области пупка, коленей и особенно лобка. Для обеих групп заболеваний характерно нарастание симптомов в жару, при спинной сухотке наблюдается похолодание и онемение, а также парестезии, особенно в стопах.

• Прогрессирующие нарушения чувствительности, чаше всего тактильной, в кистях характерны для сенсорной невропатии, миелопатии при шейном спондилезе или для двустороннего синдрома запястного канала.

• Дизестезии в строго ограниченных участках кожи наблюдаются при постоянном раздражении ветвей нервов, несущих чувствительные волокна. Особенно характерны эти ощущения для парестетической хейралгии по лучевому краю большого пальца, например при постоянном сдавлении ножницами. Парестезии в области мизинца и полоктевому краю предплечья появляются при хроническом сдавлении локтевого нерва, например, когда человек опирается на локти, при «вывихе» нерва из его ложа или при патологических процессах в периневральном пространстве.

На туловище парестезии могут возникать вследствие хронической компрессии чувствительных кожных ветвей при их прохождении через фасции. В области брюшной стенки могут быть сдавлены передние ветви нижних грудных спинномозговых нервов.

Отдельный синдром представляет собой парестетическая ноталгия, при которой хроническое сдавление сенсорных задних ветвей спинномозговых нервов вызывает болезненные парестезии в участке кожи размером с ладонь в районе медиального края лопатки. При этом определяются и объективные нарушения чувствительности. Подобные парестезии на определенных участках кожи наблюдаются и в нижних конечностях. Например, парестетическая мералгия представляет собой синдром ущемления наружного кожного нерва бедра в паховой связке (жгучие парестезии и нарушение чувствительности на передненаружной поверхности бедра, которые уменьшаются при сгибании бедра).

Болезненные ощущения в зонах Геда наблюдаются при заболеваниях внутренних органов. Они представляют собой важный диагностический критерий в общей терапии. Отраженная боль носит обычно тупой характер, ее локализацию трудно точно определить.

Иногда при головной боли наблюдается неприятное ощущение «прострела» от затылка в спину, вдоль позвоночника, а также в ноги и/или руки. Этот признак, обозначаемый как феномен Лермитта, был описан выше.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Гиперестезия кожная

Гиперестезия кожная

Повышенная чувствительность кожи не является заболеванием, но входит в симптомокомплекс неврологических заболеваний или предвестников, последствий их образования. По МКБ №10 имеет код R20.3. Под гиперестезией подразумевают психическую нестабильность, проявляющуюся в раздражительности, возбудимости, плаксивости.

Причины

Повышение чувствительности кожных рецепторов вызывается следующими причинами:

  • интоксикация ядовитыми газами;
  • психические расстройства;
  • развивающихся полиневропатии;
  • системные заболевания;
  • заболевания суставов, опорно-двигательного аппарата;
  • нарушения эластичности, тургора кожи;
  • сахарный диабет;
  • уремия;
  • физическая усталость;
  • стрессы.

Межличностные конфликты и перенапряжение может провоцировать обострение чувствительности, в том числе и кожной.

Патогенез и эпидемиология

Механизм развития симптома обусловлен развивающихся дистрофических и дегенеративных процессов в нервной ткани как следствие нарушения обмена веществ. Развивающиеся вегетативные нарушения обусловлены нарушениями проводимости по рефлекторной дуге у рецепторов. При инфекционной этиологии нарушается структура нервных оболочек, волокна нервов, что снижает мышечную чувствительность.

По распространению симптом характеризуется развитием после:

Гиперестезия кожная

Гиперестезия кожная

  • инфекционных заболеваний – 63%;
  • менингита – 16%;
  • аллергии – 12%;
  • паразитозов – 14%;
  • шок, интоксикация – 98%;
  • стоматологические заболевания – 67%.

Симптом обусловлен также заболеванием и имеет собственную эпидемиологическую характеристику.

Диагностика

Врач, занимающийся лечением и диагностикой симптомов подобных этому – психотерапевт, психиатр, терапевт, инфекционист, стоматолог.

Диагностические процедуры:

  • анализ крови на сахар;
  • анализ крови на белковые фракции;
  • токсикологический анализ крови;
  • электронейромиография.

При расшифровке результатов исследования ставится основной диагноз или его подтверждение.

Лечение

Гиперестезия кожная

Гиперестезия кожная

Направление лечебных мероприятий зависит от этиологии развития гиперестезии. При психогенных нарушениях используются психотропные препараты, коррекция социальных взаимодействий, полноценный отдых, курортное лечение.
При соматических нарушениях используются препараты по показаниям – инфузионная терапия, наружные средства, контроль показателей крови и их коррекция. При стоматологических заболеваниях проводится коррекция средств гигиены, санация полости рта, изменение пищевых привычек.Симптом может снизить социальную адаптацию и провоцировать депрессивное состояние – это является осложнением в течении заболевания имеющее симптом кожная гиперестезия.

Профилактика

Предупреждение развития и появления осложнений симптома поможет здоровый образ жизни. Занятие любимым делом, психологическое консультирование и снижение стрессовых ситуаций. В профилактику входит также прием симптоматических препаратов, исключение влияния токсических веществ и диспансерное наблюдение раз в год.

Если у вас есть симптомы описанные в этой статье, обязательно запишитесь на прием в нашу клинику.

Не занимайтесь самолечением! Даже самая маленькая проблема при неправильном лечении может значительно осложнить вашу жизнь.

Читайте также: