Что такое теплопроводность кожи

Обновлено: 18.04.2024

Килин В.В. Установление давности наступления смерти определением коэффициента теплопроводности кожи в области трупного пятна / Килин В.В.: автореферат диссертации на соискание ученой степени кандидата медицинских наук. —Москва, 2006.

библиографическое описание:
Установление давности наступления смерти определением коэффициента теплопроводности кожи в области трупного пятна / Килин В.В. — 2006.

код для вставки на форум:

КИЛИН Владимир Валентинович

УСТАНОВЛЕНИЕ ДАВНОСТИ НАСТУПЛЕНИЯ СМЕРТИ ОПРЕДЕЛЕНИЕМ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ КОЖИ В ОБЛАСТИ ТРУПНОГО ПЯТНА

14.00.24. - «Судебная медицина»

Автореферат диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в ГОУ ВПО "Ижевская государственная медицинская академия Росздрава"

Научный руководитель:

доктор медицинских наук, профессор Владислав Иванович Витер

Официальные оппоненты:

доктор медицинских наук,

Сергей Сергеевич Абрамов

кандидат медицинских наук,

доцент Евгений Христофорович Баринов

Ведущая организация:

Бюро судебно-медицинской экспертизы Департамента здравоохранения г. Москвы

Защита состоится "_"_2007 года в_часов на

заседании диссертационного совета Д208.041.04 при ГОУ ВПО " Московский государственный медико-стоматологический университет Росздрава" по адресу: 127473, г. Москва, ул. Делегатская, д. 20/1.

С диссертацией можно ознакомиться в научной библиотеке ГОУ ВПО " Московский государственный медико-стоматологический университет Росздрава" по адресу 127206, г. Москва, ул. Ву-четича, д. 10а.

Автореферат разослан "_"_200_ года.

Ученый секретарь диссертационного совета, к.м.н., доцент

Актуальность проблемы Проблема определения давности наступления смерти, занимает одно из ведущих мест в судебной медицине (Евгеньев-Тиш Е.М. 1963; Билкун В.В., Науменко В. Г 1989; Витер В.В., Толстолуцкий В.Ю. 1995; Новиков П.И. и соавт., 2004). Решение ее на основе лишь качественной оценки трупных явлений, нередко оказывается весьма затруднительным. Вот почему применение новых инструментальных методов, может позволить получить более полное представление об изменениях органов и тканей, происходящих в посмертном периоде, а значит объективизировать доказательную базу полученных данных. В настоящее время установление дифференциально-диагностических критериев давности наступления смерти осуществляются преимущественно по двум направлениям - морфологическому и биофизическому (Куликов В.А., Витер В.И., 1999, Вавилов А.Ю. 2000, и др.). Однако инструментальные методы в большинстве случаев требуют дорогостоящего, сложного лабораторного обеспечения. К сожалению, широко представленная в отечественной, зарубежной литературе и рассматриваемая судебными медиками в разных аспектах проблема установления давности смерти, не смотря на значительное число предлагаемых методов, по-прежнему вызывает значительные затруднения, поэтому требует дальнейшего детального изучения. Одним из наиболее важных и перспективных направлений является выработка критериев количественной оценки трупных явлений, развивающихся в раннем постмортальном периоде, таковым является появление на теле трупных пятен.

Из курса теплофизики известно, что отличные по своему физическому и химическому составу материалы имеют разную теплопроводность (Касаточкин В.И., Пасынский А.Г. 1960), зависящую от многих внешних и внутренних факторов. В процессе умирания, происходящие морфофункциональные изменения, приводят к изменению биофизического состояния тканей. Так П.И. Бегун и Ю.А. Шукейло (2000) приводят значение коэффициента теплопроводности васкуляризированой и неваскуляризированой кожи, а так же при слабом и сильном кровотоке, которые значительно различаются по величине. Таким образом, допускается возможность изменения теплопроводности кожи в области трупных пятен в зависимости от давности и скорости наступления смерти. Это послужило одним из оснований для проведения детального судебно-медицинского исследования, направленного на определение давности наступления смерти, основанного оценке изменения теплопроводности кожи в области трупных пятен.

Проведенная работа является продолжением программы кафедры судебной медицины Ижевской государственной медицинской академии, направленной на изучение закономерности изменения теплопроводности кожи трупа, в зависимости от влияния внешних и внутренних факторов (Хохлов С.В. 2001, Акбашев В.А. 2002, Бабушкина К.А. 2006).

Актуальность темы, ее практическая значимость для судебно-медицинской практики явились основанием для выполнения настоящего исследования, что позволило сформулировать следующую цель исследования: разработать достоверные дифференциально-диагностические экспертные критерии для уточнения давности наступления смерти по величинам коэффициентов теплопроводности кожи в области трупных пятен.

  1. Проанализировать возможность применения разработанной ранее методики забора образцов кожи, для определения коэффициента теплопроводности у трупов лиц при различной давности смерти, с учетом темпа ее наступления, используя оригинальный программно-аппаратный комплекс.
  2. Исследовать изменение значений коэффициента теплопроводности кожи в зависимости от давности и темпа наступления смерти.
  3. Установить экспертные критерии давности наступления смерти по коэффициенту теплопроводности кожи из области трупного пятна в раннем посмертном периоде.
  4. Произвести анализ зависимости коэффициента теплопроводности кожи от ряда эндо- и экзогенных факторов (пол, возраст, локализация трупного пятна, причина смерти).
  5. Сформулировать рекомендации для практической деятельности, предложив алгоритм действий судебно-медицинского эксперта при определении давности наступления смерти по величине коэффициента теплопроводности кожи в области трупного пятна.

Научная новизна исследования состоит в том, что на базе практического судебно-медицинского материала осуществлено исследование теплофизических параметров кожи из области трупных пятен с установлением закономерностей, позволяющих использовать полученные данные в качестве обоснования при определении давности наступления смерти.

Практическая значимость результатов исследования работы заключается в том, что величина коэффициента теплопроводности кожи в области трупных пятен является дифференциально-диагностическим критерием, который целесообразно использовать в практике судебной медицины для установления давности наступления смерти.

  1. В раннем посмертном периоде, с течением времени происходит увеличение теплопроводности кожи в области трупных пятен, что позволяет использовать данный фактор в качестве диагностического критерия для объективизации определения давности наступления смерти.
  2. При диагностике давности смерти методом определения теплопроводности кожи в области трупного пятна следует учитывать скорость ее наступления.
  3. Пол, возраст, причина смерти, локализация трупных пятен не оказывают влияния на теплопроводность кожи, следовательно, не требуют внесения поправочных коэффициентов при установлении давности наступления смерти.

Полученные результаты исследования используются в учебном процессе кафедр судебной медицины Ижевской государственной медицинской академии, Самарской государственной медицинской академии, внедрены в работу Государственного учреждения здравоохранения "Бюро судебно-медицинской экспертизы" Удмуртской Республики, Государственного учреждения Тюменской области " Областное бюро судебно-медицинской экспертизы", Государственного учреждения Свердловской области "Областное бюро судебно-медицинской экспертизы", Государственного учреждения здравоохранения " Набережно-Челнинское бюро судебно-медицинской экспертизы".

Апробация работы. Результаты исследования докладывались и обсуждались на заседаниях кафедры судебной медицины ГОУ ВПО "Ижевская государственная медицинская академия", Республиканского общества судебных медиков Удмуртии (Ижевск, 2004), а так же II межрегиональной межвузовской научной конференции молодых ученых и студентов "Актуальные вопросы биологии и медицины" (Ижевск, 2005).

Теплопередача с поверхности кожи. Коэффициент теплопередачи кожи

Тепловой поток направлен от более нагретого тела к менее нагретому со скоростью, пропорциональной разности температур этих тел и умноженной на коэффициент теплопередачи. Является ли передача тепла в большей мере кондуктивной или конвективной, представляет собой, возможно чисто теоретический вопрос. Но Bullard, Rapp в 1970 г. доказали, что основная часть тепла передается кондуктивным путем.

Однако большинство исследователей признают единый коэффициент теплопередачи, объединяющий конвективный и кондуктивный элементы вместе. Этот коэффициент представлен в следующем уравнении:

Hw = hw (TSk — Tw), где Hw — уровень теплопередачи, Вт/см2; hw — коэффициент теплопередачи на участке кожа—тонкий слой воды, Вт/(м2*°С); TSk — средняя температура кожи; Tw — температура воды. Значение hw может быть получено расчетным путем, применением соответствующей физической модели (например, такой как нагреваемый манекен, помещенный в воду), на основании экспериментальных данных с участием человека.

теплопередача с поверхности кожи

Если данный коэффициент известен, то можно с высокой точностью определить теплопотери. Однако каждый из перечисленных методов определения коэффициента имеет свои недостатки. Bullard, Rapp делали допущения, принимая тело человека за единый цилиндр, вокруг которого в ламинарном режиме движется вода, а теплопродукцию, точно соответствующей потере тепла в воду. Используя опубликованные в литературе величины проводимости тканей, авторы вычислили разницу температур между кожей и водой (0,45 °С) для состояния теплового равновесия. Значение кондуктивной составляющей коэффициента теплопередачи невелико и постоянно на уровне 11 Вт/(м2*°С), в то время как конвективная составляющая варьирует в прямой зависимости от скорости воды.

В неподвижной воде комбинированное значение коэффициента теплопередачи равно 105 Вт/(м2*°С). С увеличением скорости движения воды до 0,5 м/с этот коэффициент возрастает почти прямолинейно до 411 Вт/(м2*°С).

Наглядный пример использования физической модели предложили в 1971 г. Witherspoon и сотрудники. Авторы измеряли потери тепла от нагретого медного манекена в движущуюся с различной скоростью воду. Они получали линейную зависимость величины коэффициента теплопередачи от скорости движения воды. Как показано на рис. 73, значения этого коэффициента при скорости воды в интервале 0—0,5 м/с аналогичны полученным Bullard, Rapp.

К сожалению, ни аналитическая, ни физическая модели не учитывают влияния вазоконстрикции, теплообмена между артериями и венами в конечностях, изменения содержания тепла в теле и сложной формы поверхности человека. Но вместе с тем данные, полученые на человеке, отличаются вариабельностью, причины которой практически неизвестны. Почти в каждом случае вычисленное значение hw не ниже прогнозируемого при помощи аналитической или физической модели.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.

Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения — это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40—60 % организм взрослого человека рассеивает путем излучения около 40—50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

Рис. 13.4. Виды теплоотдачи. Пути отдачи тепла организмом во внешнюю среду можно условно подразделить на «влажную» теплоотдачу, связанную с испарением пота и влаги с кожи и слизистых оболочек, и на «сухую» теплоотдачу, которая не связана с потерей жидкости.

Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Отдача тепла организмом путем теплопроведения, конвекции и излучения, называемых вместе «сухой» теплоотдачей, становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды.

Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая».

При температуре внешней среды около 20 "С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500— 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Оценка коэффициента теплопередачи кожи. Вазоконстрикция

Тщательное исследование на испытуемых провел Boutelier в 1973 г. Скорость движения воды в ванне без присутствия в ней человека была приблизительно равна 0,1 м/с. Однако автор полагал, что эта скорость относительно тела человека должна быть несколько ниже, чём 0,1 м/с. Найденное значение hw в воде нейтральной температуры (32,5—33,5°С) составило 62 ±2 Вт/(м2-°С). С понижением температуры воды коэффициент теплопередачи значительно возрастал, достигая максимальной величины 105+4 Вт/(м2*°С).

Мы допускаем, что температура кожи становится почти равной температуре воды. Тем не менее значение коэффициента теплопередачи hw значительно подвержено влиянию истинной разнице температур кожи и воды. Например, если находящийся в состоянии теплового равновесия испытуемый продуцирует 100 Вт/см2 и лежит в холодной воде, а температурная разница между водой и кожей составляет 1 °С, тогда hw равен 100 Вт/(м2*°С). Однако если температурная разница будет составлять 0,5 °С, то hw соответственно 200 Вт/(м2*°С).

Boutelier, используя тщательно отобранную измерительную аппаратуру, показал, что разность температур кожи и воды изменяется в зависимости от температуры последней. В термонейтральной воде температурная разница составляет 0,6 °С, а по мере понижения температуры воды эта разница возрастает приблизительно до 1,3 °С. Разброс результатов среди испытуемых в почти термонейтральной воде составил около 0,2 °С, а в более холодной воде — около 0,5 °С. Кроме того, локальные перепады температур на границе кожа — вода варьируют в зависимости от области тела человека. Вариабельность была наименьшей в воде нейтральной температуры и наибольшей в воде более низкой температуры.

При современном уровне информации, по-видимому, маловероятно надежно прогнозировать уровень теплопотерь у обнаженного человека для широкого диапазона температур и скорости движения воды.

теплопередача

Вазоконстрикция

Воздействие холодной воды немедленно увеличивает скорость потери тепла с поверхности тела, что вызывает снижение температуры кожи. Сужение кровеносных сосудов кожи — физиологическая реакция, ускоряющая снижение температуры поверхности тела. В результате этого сохраняется внутреннее тепло, поскольку температура кожи, понижаясь, приближается к значениям температуры вода, а это в свою очередь ведет к уменьшению температурной разницы между кожей и водой, а следовательно, снижению теплопотерь. Описываемое явление представляет собой главную и важную физиологическую реакцию на воздействие холода.

Вазоконстрикция опосредована работой симпатических нервов, которые выделяют норадреналин. Имеет место также и прямое влияние холода на поверхностные кровеносные сосуды, которое, по-видимому, также важно, как и влияние симпатических нервов. Кровоток в коже и мышцах регулируется раздельно. Однако если, например, мышцы предплечья находятся в состоянии покоя, то снижение кровотока в коже предплечья связано со снижением кровотока в мышцах этой области. Известно также, что суммарный кровоток в предплечье (кровоток в коже и мышцах) может изменяться от 0,5 до 17,6 мл/100 мл ткани в 1 мин (при полной вазодилатации). На рис. 74 представлены обобщенные данные нескольких исследований. Показано, что динамика кровотока кисти отличается от таковой на верхней и нижней конечностях. Считают, что максимальная вазоконстрикция, приводящая к минимальной теплопроводности тканей, а следовательно, и наибольшей теплоизоляции, наступает при температуре кожи ниже 30 С.

Общее тепловое состояние организма является основным фактором, изменяющим вазоконстрикторные реакции на конкретном участке тела. Известно, например, что логарифм величины кровотока прямо связан с температурой кисти. Но кровоток ее ниже при любой заданной температуре, если общее тепловое состояние человека свидетельствует о переохлаждении, а не о норме или перегреве.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

При подборе тканей, трикотажа или нетканых материалов для тех или иных видов одежды и в процессах их влажно-тепловой обработки имеют особое значение теплозащитные свойства (теплоемкость, температуропроводность и теплостойкость), которые характеризуют отношение этих материалов к действию на них тепловой энергии.

Через материалы для одежды тепло передается главным образом теплопроводностью. Теплопроводностью называется способность любого вещества проводить тепло:


Степень теплопроводности материала численно характеризуется коэффициентом теплопроводности %:


Коэффициент теплопроводности показывает количество тепла, которое проходит за 1 ч через 1 м 2 однородного слоя толщиной в 1 м при разности температур на ее поверхностях в 1°С.

О теплозащитных свойствах материалов при их фактической толщине судят по коэффициенту теплопередачи К, определяемого по формуле :


Материалы для одежды не являются однородными слоями, а представляют собой систему из большого количества волокон, отделенных друг от друга порами различной формы и размеров, заполненных воздухом.

Рис. 11-63. Зависимость теплопроводности от числа слоев в одежде

Рис. 11-63. Зависимость теплопроводности от числа слоев в одежде

Передача тепла в таких материалах слагается из передачи тепла теплопроводностью через порообразующий волокнистый слой, теплопроводностью и конвекцией через поры и излучением между стенками пор. Количество тепловой энергии, передающейся любым из этих способов, приблизительно пропорционально разности температур (t1—t2) двух прилегающих изотермических поверхностей.Для материалов одежды, величина коэффициента теплопроводности К изменяется приблизительно в пределах 0,033—0,070 ккал/м ч град, а для воздуха составляет 0,020 ккал/м - ч-град. Величина коэффициента теплопроводности для одного и того же материала не является постоянной, а. может изменяться в зависимости от объемного веса материала, влажности, температуры, воздухопроницаемости и направления теплового потока.

Из графика видно, что с увеличением количества слоев одежды теплопроводность снижается и повышаются ее теплозащитные свойства.


Чем больше тепловое сопротивление материала, тем выше его теплоизоляционные свойства. Тепловое сопротивление сложного слоя равно сумме сопротивлений каждого из составляющих слоев, т. е.


Ткани, трикотаж и нетканые материалы представляют собой дисперсную систему, в которой волокна относительно равномерно распределены в дисперсной среде (воздухе). Основной особенностью структуры этих материалов является высокая пористость и сравнительно малая величина контактных площадей между отдельными волокнами в материале. Поэтому теплопередача в материалах одежды осуществляется в значительной степени через слой сравнительно неподвижного воздуха, заключенного в материале.

Таблица 11-15. Коэффициент теплопроводности различных материалов при различном объемном весе.

Объемный вес В кг/см 3

Коэффициент теплопроводности в ккал/м-ч-град

Тепловое сопротивление текстильных материалов представляет собой некоторую среднюю величину от теплового сопротивления волокна и воздуха, находящегося в порах. В табл. 11-15 представлены данные о коэффициенте теплопроводности различных материалов при разном объемном весе

Как видно из таблицы, различные материалы при резко отличающемся объемном весе имеют близкий по значению коэффициент теплопроводности. Однако объемный вес материалов для одежды не оказывает существенного влияния на их тепловое сопротивление только в определенном интервале значений. При дальнейшем увеличении объемного веса и уменьшении пористости тепловое сопротивление уменьшается, а теплопроводность увеличивается. Так, при увеличении объемного веса ткани (бобрика) в 2,5 раза ее тепловое сопротивление снизилось более чем на 45%.

Рис. 11-64. Зависимость теплового сопротивления тканей от их толщины (в условиях спокойного воздуха)

Рис. 11-64. Зависимость теплового сопротивления тканей от их толщины (в условиях спокойного воздуха)

Рис. 11-65. Влияние избыточной влажности пакета одежды на его тепловое сопротивление

Рис. 11-65. Влияние избыточной влажности пакета одежды на его тепловое сопротивление

Исходя из этого, сделаны выводы: 1) ткани с меньшим объемным весом являются более теплозащитными; 2) структура ткани при заданной толщине в условиях неподвижного воздуха непосредственно не влияет на тепловое сопротивление. Зато структура ткани оказывает существенное влияние на ее толщину и воздухопроницаемость, которые тоже непосредственно влияют на тепловое сопротивление материалов для одежды. Толщина ткани является одним из главных факторов, влияющих на тепловое сопротивление одежды независимо от ее волокнистого состава и плотности (рис. 11-64). С увеличением толщины материалов одежды пропорционально возрастает и их тепловое сопротивление. С повышением влажности материалов для одежды резко падает их тепловое сопротивление. На рис. 11-65 представлена зависимость теплового сопротивления материалов одежды от их влажности.

Резкое падение теплового сопротивления материалов одежды от их влажности объясняется тем, что коэффициент теплопроводности воды, проникающей в поры материала, равен 0,5 ккал/м-ч-град (в 20 раз больше, чем воздуха в порах среднего размера). Кроме того, наличие воды в порах материала увеличивает размеры контактных площадок между волокнами материала, что также оказывает влияние на снижение теплового сопротивления.

Рядом исследователей установлено, что увеличение коэффициента теплопроводности прямо пропорционально увеличению влажности. Степень влияния влажности текстильных материаллов на их теплопроводность неодинакова для различных тканей и зависит от рода волокон и объемного веса тканей. Так, теплопроводность тканей хлопчатобумажных более резко увеличивается с увеличением влажности, чем шерстяных тканей. Зависимость коэффициента теплопроводности тканей от их влажности может быть выражена следующей формулой:


где λвл — коэффициент теплопроводности влажной ткани; λСух — коэффициент абсолютно сухой ткани; W — объемная влажность ткани в %;

а —постоянный коэффициент, равный, приблизительно, для шерстяных тканей 0,0024 и для хлопчатобумажных — 0,0039. Зависимость теплового сопротивления от вида и объемного веса волокнистого материала приведена в табл. 11-16.

Таблица 11-16. Зависимость теплового сопротивления от вида и объемного веса материала

Суммарное тепловое сопротивление в м 2 Ч-град1ккал при объемном весе в г/см 3

Читайте также: